Thermoelectric properties of TiS2 mechanically alloyed compounds

被引:37
|
作者
Bourges, Cedric [1 ]
Barbier, Tristan [1 ]
Guelou, Gabin [2 ]
Vaqueiro, Paz [2 ]
Powell, Anthony V. [2 ]
Lebedev, Oleg I. [1 ]
Barrier, Nicolas [1 ]
Kinemuchi, Yoshiaki [3 ]
Guilmeau, Emmanuel [1 ]
机构
[1] ENSICAEN, Lab CRISMAT, CNRS, UMR 6508, 6 Blvd Marechal Juin, F-14050 Caen 04, France
[2] Univ Reading, Dept Chem, Reading RG6 6AD, Berks, England
[3] Natl Inst Adv Ind Sci & Technol, Nagoya, Aichi 4638560, Japan
基金
英国工程与自然科学研究理事会;
关键词
Thermoelectric; Titanium disulfide; Mechanical alloying; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; INTERCALATION; BULK; REFINEMENT;
D O I
10.1016/j.jeurceramsoc.2015.11.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bulk polycrystalline samples in the series T1-xNbxS2 (0 <= x <= 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20-50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x= 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x= 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite grain size and structural defects. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1183 / 1189
页数:7
相关论文
共 50 条
  • [1] Thermoelectric properties of TiS2 type materials
    Abbott, EE
    Kolis, JW
    Lowhorn, ND
    Sams, W
    Tritt, TM
    THERMOELECTRIC MATERIALS 2003-RESEARCH AND APPLICATIONS, 2004, 793 : 295 - 304
  • [2] Doping studies and thermoelectric properties of TiS2
    Sams, W
    Lowhorn, N
    Tritt, TM
    Abbott, E
    Kolis, JW
    ICT: 2005 24th International Conference on Thermoelectrics, 2005, : 99 - 101
  • [3] Enhancement in Thermoelectric Properties of TiS2 by Sn Addition
    Ramakrishnan, Anbalagan
    Raman, Sankar
    Chen, Li-Chyong
    Chen, Kuei-Hsien
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (06) : 3091 - 3098
  • [4] Thermoelectric Properties of Co-Doped TiS2
    J. Zhang
    X. Y. Qin
    H. X. Xin
    D. Li
    C. J. Song
    Journal of Electronic Materials, 2011, 40 : 980 - 986
  • [5] Enhancement in Thermoelectric Properties of TiS2 by Sn Addition
    Anbalagan Ramakrishnan
    Sankar Raman
    Li-Chyong Chen
    Kuei-Hsien Chen
    Journal of Electronic Materials, 2018, 47 : 3091 - 3098
  • [6] Thermoelectric Properties of Co-Doped TiS2
    Zhang, J.
    Qin, X. Y.
    Xin, H. X.
    Li, D.
    Song, C. J.
    JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (05) : 980 - 986
  • [7] THERMOELECTRIC-POWER OF TIS2
    AMARA, A
    FRONGILLO, Y
    AUBIN, MJ
    JANDL, S
    LOPEZCASTILLO, JM
    JAYGERIN, JP
    PHYSICAL REVIEW B, 1987, 36 (12): : 6415 - 6419
  • [8] Transport and thermoelectric properties in Copper intercalated TiS2 chalcogenide
    Guilmeau, E.
    Breard, Y.
    Maignan, A.
    APPLIED PHYSICS LETTERS, 2011, 99 (05)
  • [9] Thermoelectric anisotropy and texture of intercalated TiS2
    Guilmeau, E.
    Barbier, T.
    Maignan, A.
    Chateigner, D.
    APPLIED PHYSICS LETTERS, 2017, 111 (13)
  • [10] Silver intercalation in SPS dense TiS2: staging and thermoelectric properties
    Barbier, Tristan
    Lebedev, Oleg I.
    Roddatis, Vladimir
    Breard, Yohann
    Maignan, Antoine
    Guilmeau, Emmanuel
    DALTON TRANSACTIONS, 2015, 44 (17) : 7887 - 7895