Sharp estimates for pseudo-differential operators of type (1,1) on Triebel-Lizorkin and Besov spaces

被引:3
|
作者
Park, Bae Jun [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul, South Korea
关键词
pseudo-differential operator; Triebel-Lizorkin spaces; BOUNDEDNESS; INEQUALITIES;
D O I
10.4064/sm180317-25-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pseudo-differential operators of type (1,1) and order m are continuous from F-p(s+m,q) to F-p(s,q) if s > d/min (1, p, q) - d for 0 < p < infinity, and from B-p(s+m,q) to B-p(s,q) if s > d/min (1, p) - d for 0 < p < infinity. In this work we extend the F-boundedness result to p = infinity. Additionally, we prove that the operators map F-infinity(m,1) into bmo when s = 0, and consider Hormander's twisted diagonal condition for arbitrary s is an element of R. We also prove that the restrictions on s are necessary for the boundedness to hold.
引用
收藏
页码:129 / 162
页数:34
相关论文
共 50 条
  • [21] T1 theorem for Besov and Triebel-Lizorkin spaces
    Deng, DG
    Han, YS
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (05): : 657 - 665
  • [22] On the boundedness of pseudo-differential operators on weighted Besov-Triebel spaces
    Dintelmann, P
    MATHEMATISCHE NACHRICHTEN, 1997, 183 : 43 - 53
  • [23] T1 theorems on Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and their applications
    Yang, DC
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (01): : 53 - 72
  • [24] On the Continuity of Pseudo-Differential Operators on Multiplier Spaces Associated to Herz-type Triebel–Lizorkin Spaces
    Aissa Djeriou
    Douadi Drihem
    Mediterranean Journal of Mathematics, 2019, 16
  • [25] Difference Characterization of Besov and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type
    Wang, Fan
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 483 - 542
  • [26] Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces
    Han, YS
    Yang, DC
    STUDIA MATHEMATICA, 2003, 156 (01) : 67 - 97
  • [27] Herz type Besov and Triebel-Lizorkin spaces with variable exponent
    Shi, Chune
    Xu, Jingshi
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 907 - 921
  • [28] Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents
    Noi, Takahiro
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 341 - 404
  • [29] Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Yang, DC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 187 - 199
  • [30] Estimates of fundamental solution for Kohn Laplacian in Besov and Triebel-Lizorkin spaces
    Qin, Tongtong
    Chang, Der-Chen
    Han, Yongsheng
    Wu, Xinfeng
    APPLICABLE ANALYSIS, 2024, 103 (04) : 763 - 789