DIVIDENDS AND COMPOUND POISSON PROCESSES: A NEW STOCHASTIC STOCK PRICE MODEL

被引:1
|
作者
Gankhuu, Battulga [1 ]
Kleinow, Jacob [2 ]
Lkhamsuren, Altangerel [3 ]
Horsch, Andreas [4 ]
机构
[1] Natl Univ Mongolia, Dept Appl Math, Ulan Bator 14201, Mongolia
[2] Zeb Consulting, Friedrichstr 78, D-10117 Berlin, Germany
[3] German Mongolian Inst Resources & Technol, Fac Math Comp & Nat Sci, GMIT Campus,2nd Khoroo, Nalaikh 12790, Mongolia
[4] Tech Univ Bergakad Freiberg, Fac Business Adm, Schlosspl 1, D-09599 Freiberg, Germany
关键词
Stochastic dividend discount model; compound nonhomogeneous poisson process; random time of firm default; ML estimators; VALUATION; EARNINGS;
D O I
10.1142/S0219024922500145
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study introduces a stochastic multi-period dividend discount model (DDM) that includes (i) a compound nonhomogenous Poisson process for dividend growth and (ii) the probability of firm default. We obtain maximum likelihood (ML) estimators and confidence interval formulas of our model parameters. We apply the model to a set of firms from the S&P 500 index using historical dividend and price data over a 42-year period. Interestingly, stock price estimations calculated with the model are close to the observable prices. Overall, we prove that the model can be a useful tool for stock pricing.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] COMPARISON OF APPROXIMATIONS FOR COMPOUND POISSON PROCESSES
    Seri, Raffaello
    Choirat, Christine
    [J]. ASTIN BULLETIN, 2015, 45 (03): : 601 - 637
  • [42] LEVERS ASSOCIATED WITH COMPOUND POISSON PROCESSES
    POUGET, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (19): : 994 - &
  • [43] ON THE ESTIMATION FOR COMPOUND POISSON INARCH PROCESSES
    Goncalves, E.
    Mendes-Lopes, N.
    Silva, F.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2021, 19 (02) : 207 - 236
  • [44] APPROXIMATIONS FOR COMPOUND POISSON AND POLYA PROCESSES
    EMBRECHTS, P
    JENSEN, JL
    MAEJIMA, M
    TEUGELS, JL
    [J]. ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) : 623 - 637
  • [45] First Crossing by Compound Poisson Processes
    Zacks, Shelemyahu
    [J]. SAMPLE PATH ANALYSIS AND DISTRIBUTIONS OF BOUNDARY CROSSING TIMES, 2017, 2203 : 41 - 67
  • [46] EMPIRICAL LIKELIHOOD FOR COMPOUND POISSON PROCESSES
    Li, Zhouping
    Wang, Xiping
    Zhou, Wang
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (04) : 463 - 474
  • [47] Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science
    Li, Shilong
    Yin, Chuancun
    Zhao, Xia
    Dai, Hongshuai
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [48] Dividend Payments in a Perturbed Compound Poisson Model with Stochastic Investment and Debit Interest
    Lu, Y. H.
    Li, Y. F.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (05) : 718 - 734
  • [49] A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY
    Intarasit, A.
    Sattayatham, P.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 16 (01) : 25 - 47
  • [50] Dividend Payments in a Perturbed Compound Poisson Model with Stochastic Investment and Debit Interest
    Y. H. Lu
    Y. F. Li
    [J]. Ukrainian Mathematical Journal, 2019, 71 : 718 - 734