COMPLETE HOMOMORPHISMS BETWEEN THE LATTICES OF RADICAL SUBMODULES

被引:0
|
作者
Harehdashti, Javad Bagheri [1 ]
Moghimi, Hosein Fazaeli [1 ]
机构
[1] Univ Birjand, Dept Math, Birjand, Iran
来源
MATHEMATICAL REPORTS | 2018年 / 20卷 / 02期
关键词
radical submodule; sigma-complete module; rho-complete module; multiplication module; MODULE LATTICES; MULTIPLICATION MODULES; COMMUTATIVE RING; PRIME; MAPPINGS; SPECTRUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring and R(M) be the lattice of radical submodules of an R-module M. In this paper, we examine the properties of the mapping sigma : R(M) -> R(R) defined by sigma(N) = (N : M) and the mapping rho : R(R) -> R(M) defined by rho(I) = rad(IM), in particular considering when these are complete homomorphisms of the lattices. It is shown that a finitely generated module M is a multiplication module if and only if sigma is a lattice homomorphism if and only if sigma is a complete lattice homomorphism. It is also proved that for modules over an Artinian ring, finitely generated faithful multiplication modules and projective modules, rho is a complete lattice homomorphism.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条