ATTRACTIVE POINT AND MEAN CONVERGENCE THEOREMS FOR SEMIGROUPS OF MAPPINGS WITHOUT CONTINUITY IN HILBERT SPACES

被引:0
|
作者
Takahashi, Wataru [1 ,2 ,3 ]
Wong, Ngai-Ching [4 ]
Yao, Jen-Chih [5 ,6 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[2] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[4] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[5] Kaohsiung Med Univ, Ctr Gen Educ, Kaohsiung 80702, Taiwan
[6] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
日本学术振兴会;
关键词
Attractive point; Banach limit; fixed point; generalized hybrid mapping; Hilbert space; invariant mean; mean converegence; nonexpansive semigroup; NONLINEAR ERGODIC THEOREM; GENERALIZED HYBRID MAPPINGS; FIXED-POINT; NONEXPANSIVE-MAPPINGS; WEAK-CONVERGENCE; BANACH-SPACES; CONVEXITY; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the theory of invariant means, we first prove an attractive point and fixed point theorem for commutative semigroups of mappings without continuity which generalizes theorems of Takahashi and Takeuchi [19] and Atsushiba and Takahashi [1] in a Hilbert space. We also obtain a mean convergence theorem of Bullion's type [2] for the semigroups of mappings without continuity. Using this result, we also prove their mean convergence theorems in a Hilbert space.
引用
收藏
页码:1087 / 1103
页数:17
相关论文
共 50 条