Analytical and numerical investigation of the performance of the BGT2 condition for low-frequency acoustic scattering problems

被引:1
|
作者
Reiner, Robert C., Jr. [1 ]
Djellouli, Rabia
Harari, Isaac
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
[2] Tel Aviv Univ, Dept Solid Mech Mat & Struct, IL-69978 Ramat Aviv, Israel
基金
美国国家科学基金会;
关键词
acoustic scattering; low-frequency regime; eccentricity; local absorbing boundary conditions; damping effect; on-surface radiating condition (OSRC); specific impedance; Mathieu functions;
D O I
10.1016/j.cam.2006.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical and numerical analysis is performed to assess the performance of the second order Bayliss-Gunzburger-Turkel (BGT2) condition when applied to solving low-frequency acoustic scattering problems in the case of elongated scatterers. This investigation suggests that BGT2 retains an acceptable level of accuracy for relatively low wavenumber. A damping effect is incorporated to the BGT2 condition in order to extend the range of satisfactory performance. This damping procedure consists in adding only a constant imaginary part to the wavenumber. The numerical results indicate that the modified version of BGT2 extends the range of satisfactory performance by improving the level of accuracy by up to two orders of magnitude. Guidelines on the appropriate choice of the damping coefficient are provided. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:526 / 536
页数:11
相关论文
共 50 条
  • [31] Spectral and condition number estimates of the acoustic single-layer operator for low-frequency multiple scattering in dense media
    Thierry, Bertrand
    Antoine, Xavier
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 380 - 395
  • [32] An improved surface radiation condition for high-frequency acoustic scattering problems
    Antoine, Xavier
    Darbas, Marion
    Lu, Ya Yan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 4060 - 4074
  • [33] Numerical investigation on formation mechanism of low-frequency detonation instability
    Zhang Y.
    Cheng M.
    Rong G.
    Wang J.
    Baozha Yu Chongji/Explosion and Shock Waves, 2021, 41 (09):
  • [34] SCATTERING THEORY INTERFERENTION THEOREMS IN VECTOR PROBLEMS OF LOW-FREQUENCY DIFFRACTION
    EFIMOV, SP
    MURATOV, RZ
    DOKLADY AKADEMII NAUK SSSR, 1978, 241 (06): : 1315 - 1318
  • [35] Low-frequency acoustic scattering by gas-filled prolate spheroids in liquids
    Ye, Z
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (04): : 1945 - 1952
  • [36] Mechanism of low-frequency Raman scattering from the acoustic vibrations of dielectric nanoparticles
    Mattarelli, M.
    Montagna, M.
    Rossi, F.
    Chiasera, A.
    Ferrari, M.
    PHYSICAL REVIEW B, 2006, 74 (15)
  • [37] Brillouin scattering study of low-frequency bulk acoustic phonons in multilayer graphene
    Wang, Z. K.
    Lim, H. S.
    Ng, S. C.
    Ozyilmaz, B.
    Kuok, M. H.
    CARBON, 2008, 46 (15) : 2133 - 2136
  • [38] Scattering of low-frequency acoustic waves from a moving source by the sea surface
    Bennaceur, Iannis
    Cristol, Xavier
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (05): : 3483 - 3501
  • [39] A revisit to the plane problem for low-frequency acoustic scattering by an elastic cylindrical shell
    Yucel, Hazel
    Ege, Nihal
    Erbas, Baris
    Kaplunov, Julius
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (08) : 1699 - 1710