Estimands: improving inference in randomized controlled trials in clinical nutrition in the presence of missing values

被引:4
|
作者
Ritz, Christian [1 ]
Ronn, Birgitte [2 ]
机构
[1] Univ Copenhagen, Dept Nutr Exercise & Sports, Fac Sci, Copenhagen, Denmark
[2] Leo Pharma As, Biometr, Copenhagen, Denmark
关键词
INTENTION-TO-TREAT;
D O I
10.1038/s41430-018-0207-x
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
For randomized controlled trials, the impact of the amount and handling of missing data on the interpretation of the treatment effect has been unclear. The current use of intention to treat, per protocol, and complete-case analysis has shortcomings. The use of estimands may lead to improved estimation of treatment effects through more precise characterizations of the fate of treatments after dropout or other post-randomization events. A perspective on current and future developments with a view toward clinical nutrition is provided.
引用
收藏
页码:1291 / 1295
页数:5
相关论文
共 50 条
  • [1] Estimands: improving inference in randomized controlled trials in clinical nutrition in the presence of missing values
    Christian Ritz
    Birgitte Rønn
    [J]. European Journal of Clinical Nutrition, 2018, 72 : 1291 - 1295
  • [2] Causal Inference and Estimands in Clinical Trials
    Lipkovich, Ilya
    Ratitch, Bohdana
    Mallinckrodt, Craig H.
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2020, 12 (01): : 54 - 67
  • [3] Hypothetical Estimands in Clinical Trials: A Unification of Causal Inference and Missing Data Methods
    Parra, Camila Olarte
    Daniel, Rhian M.
    Bartlett, Jonathan W.
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2023, 15 (02): : 421 - 432
  • [4] Choosing estimands in clinical trials with missing data
    Mallinckrodt, Craig
    Molenberghs, Geert
    Rathmann, Suchitrita
    [J]. PHARMACEUTICAL STATISTICS, 2017, 16 (01) : 29 - 36
  • [5] Estimands and inference in cluster-randomized vaccine trials
    Kilpatrick, Kayla W.
    Hudgens, Michael G.
    Halloran, M. Elizabeth
    [J]. PHARMACEUTICAL STATISTICS, 2020, 19 (05) : 710 - 719
  • [6] Addressing missing data in randomized clinical trials: A causal inference perspective
    Cornelisz, Ilja
    Cuijpers, Pim
    Donker, Tara
    van Klaveren, Chris
    [J]. PLOS ONE, 2020, 15 (07):
  • [7] Estimands for clinical endpoints in tuberculosis treatment randomized controlled trials: a retrospective application in a completed trial
    Isabelle R. Weir
    Suzanne M. Dufault
    Patrick P. J. Phillips
    [J]. Trials, 25
  • [8] Automated causal inference in application to randomized controlled clinical trials
    Ji Q. Wu
    Nanda Horeweg
    Marco de Bruyn
    Remi A. Nout
    Ina M. Jürgenliemk-Schulz
    Ludy C. H. W. Lutgens
    Jan J. Jobsen
    Elzbieta M. van der Steen-Banasik
    Hans W. Nijman
    Vincent T. H. B. M. Smit
    Tjalling Bosse
    Carien L. Creutzberg
    Viktor H. Koelzer
    [J]. Nature Machine Intelligence, 2022, 4 : 436 - 444
  • [9] Estimands for clinical endpoints in tuberculosis treatment randomized controlled trials: a retrospective application in a completed trial
    Weir, Isabelle R.
    Dufault, Suzanne M.
    Phillips, Patrick P. J.
    [J]. TRIALS, 2024, 25 (01)
  • [10] Automated causal inference in application to randomized controlled clinical trials
    Wu, Ji Q.
    Horeweg, Nanda
    de Bruyn, Marco
    Nout, Remi A.
    Jurgenliemk-Schulz, Ina M.
    Lutgens, Ludy C. H. W.
    Jobsen, Jan J.
    Van der Steen-Banasik, Elzbieta M.
    Nijman, Hans W.
    Smit, Vincent T. H. B. M.
    Bosse, Tjalling
    Creutzberg, Carien L.
    Koelzer, Viktor H.
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (05) : 436 - +