A new meshfree method for modeling strain gradient microbeams

被引:5
|
作者
Sayyidmousavi, Alireza [1 ]
Daneshmand, Farhang [2 ]
Foroutan, Mehrdad [3 ]
Fawaz, Zouheir [4 ]
机构
[1] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
[2] McGill Univ, Dept Mech Engn, Montreal, PQ, Canada
[3] Razi Univ, Dept Mech Engn, Kermanshah, Iran
[4] Ryerson Univ, Dept Aerosp Engn, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Meshfree method; Point interpolation; Strain gradient; Beam; Static analysis; Dynamic analysis; 2ND-ORDER COMPUTATIONAL HOMOGENIZATION; FINITE-ELEMENT FORMULATIONS; WALLED CARBON NANOTUBES; DYNAMIC-ANALYSIS; ELASTICITY; DEFORMATION; SIZE; PLASTICITY; VIBRATIONS; STRESS;
D O I
10.1007/s40430-018-1305-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The incapability of classical elasticity theory of accurately modeling the deformation behavior of structures at micro- and nanoscales has necessitated the development of more advanced theories. The strain gradient theory, being one of such theories, involves higher-order spatial derivatives of the field variables. However, except for few cases, there exists no analytical solution based on the strain gradient theory. This paper proposes a novel meshfree method with modified point interpolation functions possessing the Kronecker delta property; it is proposed to incorporate the strain gradient formulation into the Euler-Bernoulli beam theory. In the present method, the continuity of the shape function and its higher derivatives, appearing in the general form of the strain gradient theory, can be much more conveniently accommodated compared to the FEM. In addition, the present approach is based on the global weak form which is computationally less costly as compared to meshfree methods based on local weak form. The validity of the method is demonstrated by comparing the results with both analytical and experimental results for beams at macro- and microscales for static and dynamic loadings.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A new boundary meshfree method with distributed sources
    Liu, Y. J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2010, 34 (11) : 914 - 919
  • [42] A new boundary meshfree method for potential problems
    Sun, Fang-Ling
    Zhang, Yao-Ming
    Young, Der-Liang
    Chen, Wen
    ADVANCES IN ENGINEERING SOFTWARE, 2016, 100 : 32 - 42
  • [43] Size -dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory
    Karamanli, Armagan
    Vo, Thuc P.
    COMPOSITE STRUCTURES, 2020, 246 (246)
  • [44] Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity
    Akgoz, Bekir
    Civalek, Omer
    COMPOSITE STRUCTURES, 2015, 134 : 294 - 301
  • [45] Postbuckling of functionally graded microbeams: a theoretical study based on a reformulated strain gradient elasticity theory
    Yin, Shuohui
    Wang, Xuefei
    Bui, Tinh Quoc
    Liu, Jingang
    Yu, Tiantang
    Gu, Shuitao
    ACTA MECHANICA, 2024, 235 (09) : 5529 - 5544
  • [46] A comparative study of modified strain gradient theory and modified couple stress theory for gold microbeams
    Kandaz, Murat
    Dal, Husnu
    ARCHIVE OF APPLIED MECHANICS, 2018, 88 (11) : 2051 - 2070
  • [47] A comparative study of modified strain gradient theory and modified couple stress theory for gold microbeams
    Murat Kandaz
    Hüsnü Dal
    Archive of Applied Mechanics, 2018, 88 : 2051 - 2070
  • [48] A modified strain gradient theory for buckling, bending and free vibration behaviors of metal foam microbeams
    Nguyen, Ngoc-Duong
    Bui, Van-Tai
    Nguyen, Trung-Kien
    STRUCTURES, 2024, 64
  • [49] Static and dynamic modeling of functionally graded Euler-Bernoulli microbeams based on reformulated strain gradient elasticity theory using isogeometric analysis
    Dinachandra, Moirangthem
    Alankar, Alankar
    COMPOSITE STRUCTURES, 2022, 280
  • [50] Strain gradient theory-based vibration analyses for functionally graded microbeams reinforced by GPL
    Zhang, Jinghua
    Yao, Yuqin
    PHYSICA SCRIPTA, 2024, 99 (04)