Quantum geometric tensor and quantum phase transitions in the Lipkin-Meshkov-Glick model

被引:15
|
作者
Gutierrez-Ruiz, Daniel [1 ]
Gonzalez, Diego [1 ,2 ]
Chavez-Carlos, Jorge [3 ]
Hirsch, Jorge G. [1 ]
Vergara, J. David [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apartado Postal 70-543, Mexico City 04510, DF, Mexico
[2] CINVESTAV, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City 07360, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY; BEHAVIOR; FIELD;
D O I
10.1103/PhysRevB.103.174104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum metric tensor and its scalar curvature for a particular version of the Lipkin-Meshkov-Glick model. We build the classical Hamiltonian using Bloch coherent states and find its stationary points. They exhibit the presence of a ground-state quantum phase transition where a bifurcation occurs, showing a change in stability associated with an excited-state quantum phase transition. Symmetrically, for a sign change in one Hamiltonian parameter, the same phenomenon is observed in the highest-energy state. Employing the Holstein-Primakoff approximation, we derive analytic expressions for the quantum metric tensor and compute the scalar and Berry curvatures. We contrast the analytic results with their finite-size counterparts obtained through exact numerical diagonalization and find excellent agreement between them for large sizes of the system in a wide region of the parameter space except in points near the phase transition where the Holstein-Primakoff approximation ceases to be valid.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Classical and quantum phase transitions in the Lipkin-Meshkov-Glick model
    Castanos, Octavio
    Lopez-Pena, Ramon
    Hirsch, Jorge G.
    Lopez-Moreno, Enrique
    [J]. PHYSICAL REVIEW B, 2006, 74 (10)
  • [2] Geometric phase and quantum phase transition in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    Li, K.
    Yi, X. X.
    [J]. PHYSICS LETTERS A, 2006, 360 (02) : 243 - 248
  • [3] Time scales at quantum phase transitions in the Lipkin-Meshkov-Glick model
    de Los Santos, F.
    Romera, E.
    Castanos, O.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04):
  • [4] Quantum phase transitions in networks of Lipkin-Meshkov-Glick models
    Sorokin, A. V.
    Bastidas, V. M.
    Brandes, T.
    [J]. PHYSICAL REVIEW E, 2014, 90 (04):
  • [5] Peculiar Quantum Phase Transitions and Hidden Supersymmetry in a Lipkin-Meshkov-Glick Model
    Chen Gang
    Liang Jiu-Qing
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) : 881 - 884
  • [7] Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model
    Caneva, Tommaso
    Fazio, Rosario
    Santoro, Giuseppe E.
    [J]. PHYSICAL REVIEW B, 2008, 78 (10)
  • [8] Lipkin-Meshkov-Glick model in a quantum Otto cycle
    Selçuk Çakmak
    Ferdi Altintas
    Özgür E. Müstecaplıoğlu
    [J]. The European Physical Journal Plus, 131
  • [9] Lipkin-Meshkov-Glick model in a quantum Otto cycle
    Cakmak, Selcuk
    Altintas, Ferdi
    Mustecaplioglu, Ozgur E.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06):
  • [10] Time delayed control of excited state quantum phase transitions in the Lipkin-Meshkov-Glick model
    Kopylov, Wassilij
    Brandes, Tobias
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17