Lipkin-Meshkov-Glick model in a quantum Otto cycle

被引:0
|
作者
Selçuk Çakmak
Ferdi Altintas
Özgür E. Müstecaplıoğlu
机构
[1] Ondokuz Mayıs University,Department of Physics
[2] Abant Izzet Baysal University,Department of Physics
[3] Koç University,Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Lipkin-Meshkov-Glick model of two anisotropically interacting spins in a magnetic field is proposed as a working substance of a quantum Otto engine to explore and exploit the anisotropy effects for the optimization of engine operation. Three different cases for the adiabatic branches of the cycle have been considered. In the first two cases, either the magnetic field or coupling strength are changed while, in the third case, both the magnetic field and the coupling strength are changed by the same ratio. The system parameters for which the engine can operate similar to or dramatically different from the engines of non-interacting spins or of coupled spins with Ising model or isotropic XY model interactions are determined. In particular, the role of anisotropy to enhance cooperative work, and to optimize maximum work with high efficiency, as well as to operate the engine near the Carnot bound are revealed.
引用
收藏
相关论文
共 50 条
  • [1] Lipkin-Meshkov-Glick model in a quantum Otto cycle
    Cakmak, Selcuk
    Altintas, Ferdi
    Mustecaplioglu, Ozgur E.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06):
  • [2] Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model
    Caneva, Tommaso
    Fazio, Rosario
    Santoro, Giuseppe E.
    [J]. PHYSICAL REVIEW B, 2008, 78 (10)
  • [3] Complexity in the Lipkin-Meshkov-Glick model
    Pal, Kunal
    Pal, Kuntal
    Sarkar, Tapobrata
    [J]. PHYSICAL REVIEW E, 2023, 107 (04)
  • [4] Classical and quantum phase transitions in the Lipkin-Meshkov-Glick model
    Castanos, Octavio
    Lopez-Pena, Ramon
    Hirsch, Jorge G.
    Lopez-Moreno, Enrique
    [J]. PHYSICAL REVIEW B, 2006, 74 (10)
  • [5] Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system
    Zhou, Yuan
    Ma, Sheng-Li
    Li, Bo
    Li, Xiao-Xiao
    Li, Fu-Li
    Li, Peng-Bo
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [6] Quantum otto machine in Lipkin-Meshkov-Glick model with magnetic field and a symmetric cross interaction
    Abd-Rabbou, M. Y.
    Khalil, E. M.
    Al-Awfi, Saud
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [7] Multiparticle entanglement in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    [J]. PHYSICAL REVIEW A, 2008, 77 (05):
  • [8] Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
    Campbell, Steve
    De Chiara, Gabriele
    Paternostro, Mauro
    Palma, G. Massimo
    Fazio, Rosario
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [9] Universality of the negativity in the Lipkin-Meshkov-Glick model
    Wichterich, Hannu
    Vidal, Julien
    Bose, Sougato
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [10] Thermodynamical limit of the Lipkin-Meshkov-Glick model
    Ribeiro, Pedro
    Vidal, Julien
    Mosseri, Remy
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (05)