A Canonical Transformation to Eliminate Resonant Perturbations. I.

被引:0
|
作者
Deme, Barnabas [1 ]
Kocsis, Bence [1 ,2 ]
机构
[1] Eotvos Lorand Univ, Inst Phys, Pazmany PS 1-A, H-1117 Budapest, Hungary
[2] Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England
来源
ASTRONOMICAL JOURNAL | 2021年 / 162卷 / 01期
基金
欧洲研究理事会;
关键词
EVOLUTION; SYSTEMS; MOTION;
D O I
10.3847/1538-3881/abfb6d
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study dynamical systems that admit action-angle variables at leading order, which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high-frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However, if the perturbations are inside or close to a resonance, i.e., the frequencies of the unperturbed system are commensurate; these canonical transformations are subject to divergences. We introduce a canonical transformation that eliminates the high-frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Theoretical models of chronotherapy: I. Periodic perturbations in oscillating chemical reactions
    Salazar, C
    Garcia, L
    Rodriguez, Y
    Garcia, JM
    Quintana, R
    Rieumont, J
    Nieto-Villar, JM
    BIOLOGICAL RHYTHM RESEARCH, 2003, 34 (03) : 241 - 249
  • [32] Localization on Avron-Exner-Last graphs: I. Local perturbations
    Chen, Kingwood
    Molchanov, Stanislav
    Vainberg, Boris
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 81 - +
  • [33] On the continuous resonant equation for NLS. I. Deterministic analysis
    Germain, Pierre
    Hani, Zaher
    Thomann, Laurent
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (01): : 131 - 163
  • [34] CMB quadrupole suppression. I. Initial conditions of inflationary perturbations
    Boyanovsky, D.
    de Vega, H. J.
    Sanchez, N. G.
    PHYSICAL REVIEW D, 2006, 74 (12):
  • [35] Linear perturbations on the cosmological background in the relativistic theory of gravitation: I. Theory
    Modestov K.A.
    Chugreev Y.V.
    Physics of Particles and Nuclei Letters, 2013, 10 (4) : 295 - 299
  • [36] Planetary perturbations for Oort Cloud comets. I. Distributions and dynamics
    Fouchard, M.
    Rickman, H.
    Froeschle, Ch
    Valsecchi, G. B.
    ICARUS, 2013, 222 (01) : 20 - 31
  • [37] Histories approach to general relativity: I. The spacetime character of the canonical description
    Savvidou, N
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) : 615 - 629
  • [38] Negatively charged xanthine. I. Anions formed by canonical isomers
    Berdys-Kochanska, J
    Kruszewski, J
    Skurski, P
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (50): : 11407 - 11412
  • [39] Linear polarimetry of Ap stars. I. A simple canonical model
    Landolfi, M.
    Landi Degl'Innocenti, E.
    Landi Degl'Innocenti, M.
    Leroy, J.L.
    Astronomy and Astrophysics, 1993, 272 (01):
  • [40] Canonical quantum gravity in the Vassiliev invariants arena: I. Kinematical structure
    Di Bartolo, C
    Gambini, R
    Griego, J
    Pullin, J
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) : 3211 - 3237