Regression clustering with redescending M-estimators

被引:2
|
作者
Garlipp, T [1 ]
Müller, CH [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Fachbereich Math 6, D-26111 Oldenburg, Germany
关键词
D O I
10.1007/3-540-26981-9_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use the local maxima of a redescending M-estimator to identify clusters, a method proposed already by Morgenthaler (1990) for finding regression clusters. We work out the method not only for classical regression but also for orthogonal regression and multivariate locations and give consistency results for all three cases. The approach of orthogonal regression is applied to the identification of edges in noisy images.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [21] A NOTE ON THE UNIQUENESS OF M-ESTIMATORS IN ROBUST REGRESSION
    CRISP, A
    BURRIDGE, J
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (02): : 205 - 208
  • [22] Simple consistent cluster methods based on redescending M-estimators with an application to edge identification in images
    Müller, CH
    Garlipp, T
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 92 (02) : 359 - 385
  • [23] GENERALIZED M-ESTIMATORS FOR ERRORS-IN-VARIABLES REGRESSION
    CHENG, CL
    VANNESS, JW
    ANNALS OF STATISTICS, 1992, 20 (01): : 385 - 397
  • [24] AN ALMOST-SURE EXPANSION FOR REGRESSION M-ESTIMATORS
    FRESEN, JL
    LOMBARD, F
    SOUTH AFRICAN STATISTICAL JOURNAL, 1992, 26 (02) : 83 - 93
  • [25] BOUNDEDNESS OF M-ESTIMATORS FOR LINEAR REGRESSION IN TIME SERIES
    Johansen, Soren
    Nielsen, Bent
    ECONOMETRIC THEORY, 2019, 35 (03) : 653 - 683
  • [26] Clustering with position-specific constraints on variance: Applying redescending M-estimators to label-free LC-MS data analysis
    Fruehwirth, Rudolf
    Mani, D. R.
    Pyne, Saumyadipta
    BMC BIOINFORMATICS, 2011, 12
  • [27] Clustering with position-specific constraints on variance: Applying redescending M-estimators to label-free LC-MS data analysis
    Rudolf Frühwirth
    D R Mani
    Saumyadipta Pyne
    BMC Bioinformatics, 12
  • [28] AN ADAPTIVE MULTIPLE-REGRESSION PROCEDURE BASED ON M-ESTIMATORS
    MOBERG, TF
    RAMBERG, JS
    RANDLES, RH
    TECHNOMETRICS, 1980, 22 (02) : 213 - 224
  • [29] The Comparing of S-estimator and M-estimators in Linear Regression
    Cetin, Meral
    Toka, Onur
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2011, 24 (04): : 747 - 752
  • [30] BOOTSTRAPPING M-ESTIMATORS OF A MULTIPLE LINEAR-REGRESSION PARAMETER
    LAHIRI, SN
    ANNALS OF STATISTICS, 1992, 20 (03): : 1548 - 1570