Real-Time Learning of Wing Motion Correction in an Unconstrained Flapping-Wing Air Vehicle

被引:1
|
作者
Gallagher, John C. [1 ]
Matson, Eric T. [2 ]
Slater, Ryan [1 ]
机构
[1] Univ Cincinnati, Elect & Comp Engn, Cincinnati, OH 45221 USA
[2] Purdue Univ, Comp & Informat Technol, W Lafayette, IN USA
关键词
Flapping-Wing Micro Air Vehicle; Evolvable and Adaptive Hardware; Evolutionary Computation; Adaptive Control;
D O I
10.1109/IRC55401.2022.00010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Small Flapping-Wing Micro-Air Vehicles (FW-MAVs) can experience wing damage and wear while in service. Even small amounts of wing can prevent the vehicle from attaining desired waypoints without significant adaptation to onboard flight control. In previous work, we demonstrated that low-level adaptation of wing motion patterns, rather than high-level adaptation of path control, could restore acceptable performance. We further demonstrated that this low-level adaptation could be accomplished while the vehicle was in normal service and without requiring excessive amounts of flight time. Previous work, however, did not carefully consider the use of these methods when the vehicle was completely unconstrained in three-dimensional space (I.E. no mechanical safety supports) and when all vehicle degrees of freedom had to be simultaneously controlled. Also, previous work presumed that the learning algorithm could adapt wing motion patterns with minimal constraints on shape. The newest generation of FW-MAVs we consider place some significant constraints on legal wing motions which brings into question the efficacy of previous work for current vehicles. In this paper, we will provide compelling evidence that learning during unconstrained flight under the newly imposed wing motion conditions is both practical and feasible. This paper constitutes the first formal report of these results and removes the final barriers that had existed to implementation in a fully-realized physical FW-MAV.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 50 条
  • [1] Mechanism Design and Motion Analysis of a Flapping-Wing Air Vehicle
    Shi, Yunde
    He, Wang
    Guo, Mingqiu
    Xia, Dan
    Luo, Xiang
    Ji, Xiaoqiang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [2] Flight Dynamics of a Flapping-Wing Air Vehicle
    Krashanitsa, Roman Y.
    Silin, Dmitro
    Shkarayev, Sergey V.
    Abate, Gregg
    [J]. INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, 2009, 1 (01) : 35 - 49
  • [3] Dove: A biomimetic flapping-wing micro air vehicle
    Yang, Wenqing
    Wang, Liguang
    Song, Bifeng
    [J]. INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, 2018, 10 (01) : 70 - 84
  • [4] Development of Flapping-wing Micro Air Vehicle in Asia
    Tan, Xiaobo
    Zhang, Weiping
    Ke, Xijun
    Chen, Wenyuan
    Zou, Caijun
    Liu, Wu
    Cui, Feng
    Wu, Xiaosheng
    Li, Hongyi
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 3939 - 3942
  • [5] Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle
    Kang, Lae-Hyong
    Jang, Hee-Suk
    Leem, Ju-Young
    Han, Jae-Hung
    [J]. COMPOSITES RESEARCH, 2009, 22 (06): : 7 - 12
  • [6] Improvements to Speed and Efficacy in Non-Stationary Learning in a Flapping-Wing Air Vehicle: Constrained and Unconstrained Flight
    Gallagher, John C.
    Sam, Monica
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [7] Design of an active wing-folding biomimetic flapping-wing air vehicle
    Zhu, Yongqiang
    Zou, Longhua
    Zhuang, Huyue
    Liu, Hao
    Zhang, Pingxia
    Zhou, Guangyao
    [J]. ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [8] Wing Design, Fabrication, and Analysis for an X-Wing Flapping-Wing Micro Air Vehicle
    Cheaw, Boon Hong
    Ho, Hann Woei
    Abu Bakar, Elmi
    [J]. DRONES, 2019, 3 (03) : 1 - 21
  • [9] Numerical Simulation of a Flexible X-Wing Flapping-Wing Micro Air Vehicle
    Deng, S.
    Percin, M.
    van Oudheusden, B. W.
    Bijl, H.
    Remes, B.
    Xiao, T.
    [J]. AIAA JOURNAL, 2017, 55 (07) : 2295 - 2306
  • [10] Development and testing of the mentor flapping-wing micro air vehicle
    Zdunich, Patrick
    Bilyk, Derek
    MacMaster, Marc
    Loewen, David
    DeLaurier, James
    Kornbluh, Roy
    Low, Tom
    Stanford, Scott
    Holeman, Dennis
    [J]. JOURNAL OF AIRCRAFT, 2007, 44 (05): : 1701 - 1711