Bayesian Hierarchical Model for Change Point Detection in Multivariate Sequences

被引:4
|
作者
Jin, Huaqing [1 ]
Yin, Guosheng [1 ]
Yuan, Binhang [2 ]
Jiang, Fei [3 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[2] Rice Univ, Comp Sci Dept, Houston, TX USA
[3] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
关键词
Change points; Multivariate data; Nonlocal prior; Nonmaximum suppression; Poisson-Dirichlet process; SEGMENTATION; ALGORITHM; CLUSTER;
D O I
10.1080/00401706.2021.1927848
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the wind turbine anomaly detection, we propose a Bayesian hierarchical model (BHM) for the mean-change detection in multivariate sequences. By combining the exchange random order distribution induced from the Poisson-Dirichlet process and nonlocal priors, BHM exhibits satisfactory performance for mean-shift detection with multivariate sequences under different error distributions. In particular, BHM yields the smallest detection error compared with other competitive methods considered in the article. We use a local scan procedure to accelerate the computation, while the anomaly locations are determined by maximizing the posterior probability through dynamic programming. We establish consistency of the estimated number and locations of the change points and conduct extensive simulations to evaluate the BHM approach. Among the popular change point detection algorithms, BHM yields the best performance for most of the datasets in terms of the F1 score for the wind turbine anomaly detection.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [31] Generalized multiple change-point detection in the structure of multivariate, possibly high-dimensional, data sequences
    Andreas Anastasiou
    Angelos Papanastasiou
    [J]. Statistics and Computing, 2023, 33
  • [32] An exact approach to Bayesian sequential change point detection
    Ruggieri, Eric
    Antonellis, Marcus
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 97 : 71 - 86
  • [33] Generalized multiple change-point detection in the structure of multivariate, possibly high-dimensional, data sequences
    Anastasiou, Andreas
    Papanastasiou, Angelos
    [J]. STATISTICS AND COMPUTING, 2023, 33 (05)
  • [34] MULTINOMIAL SAMPLING FOR HIERARCHICAL CHANGE-POINT DETECTION
    Romero-Medrano, Lorena
    Moreno-Munoz, Pablo
    Artes-Rodriguez, Antonio
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [35] Change-point detection in hierarchical circadian models
    Moreno-Munoz, Pablo
    Ramirez, David
    Artes-Rodriguez, Antonio
    [J]. PATTERN RECOGNITION, 2021, 113
  • [36] Fuzzy/Bayesian change point detection approach to incipient fault detection
    D'Angelo, M. F. S. V.
    Palhares, R. M.
    Takahashi, R. H. C.
    Loschi, R. H.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (04): : 539 - 551
  • [37] BOPA: A Bayesian hierarchical model for outlier expression detection
    Hong, Zhaoping
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4146 - 4156
  • [38] Bayesian multivariate linear regression with application to change point models in hydrometeorological variables
    Seidou, O.
    Asselin, J. J.
    Ouarda, T. B. M. J.
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (08)
  • [39] Temporal state change Bayesian networks for modeling of evolving multivariate state sequences: model, structure discovery and parameter estimation
    Artur Mrowca
    Florian Gyrock
    Stephan Günnemann
    [J]. Data Mining and Knowledge Discovery, 2022, 36 : 240 - 294
  • [40] Temporal state change Bayesian networks for modeling of evolving multivariate state sequences: model, structure discovery and parameter estimation
    Mrowca, Artur
    Gyrock, Florian
    Gunnemann, Stephan
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (01) : 240 - 294