Discrete fractional cobweb models

被引:6
|
作者
Bohner, Martin [1 ]
Jonnalagadda, Jagan Mohan [2 ]
机构
[1] Missouri S&T, Rolla, MO 65409 USA
[2] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
Caputo nabla fractional difference; Cobweb model; Mittag-Leffler-type function; Equilibrium; Stability;
D O I
10.1016/j.chaos.2022.112451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we propose two types of discrete fractional cobweb models. We derive the analytical solutions of these models and establish sufficient conditions on the stability of their equilibria. We also provide two examples to demonstrate the applicability of our main results.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Discrete random walk models for space-time fractional diffusion
    Gorenflo, R
    Mainardi, F
    Moretti, D
    Pagnini, G
    Paradisi, P
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 521 - 541
  • [22] Fuzzy discrete fractional calculus and fuzzy fractional discrete equations
    Hoa, Ngo Van
    Phu, Nguyen Dinh
    FUZZY SETS AND SYSTEMS, 2024, 492
  • [23] Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays
    Gori, Luca
    Guerrini, Luca
    Sodini, Mauro
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [24] Fractional derivative of demand and supply functions in the cobweb economics model and Markov process
    Qin, Ximei
    Rui, Zhaobiao
    Peng, Weicai
    FRONTIERS IN PHYSICS, 2023, 11
  • [25] Fractional-rational form of discrete mathematical models of elements of an electric circuit
    Slon'ovs'kyi R.V.
    Tsesliv O.V.
    Journal of Mathematical Sciences, 2002, 109 (1) : 1209 - 1214
  • [26] Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion
    Rudolf Gorenflo
    Alessandro Vivoli
    Francesco Mainardi
    Nonlinear Dynamics, 2004, 38 : 101 - 116
  • [27] Discrete and continuous random walk models for space-time fractional diffusion
    Gorenflo, R
    Vivoli, A
    Mainardi, F
    NONLINEAR DYNAMICS, 2004, 38 (1-4) : 101 - 116
  • [28] Behaviour of fractional discrete-time consensus models with delays for summator dynamics
    Girejko, E.
    Mozyrska, D.
    Wyrwas, M.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2018, 66 (04) : 403 - 410
  • [29] Synchronization of discrete time fractional order neuromuscular models in the presence and absence of stimulus
    Vignesh, D.
    Fataf, Naa
    Rahim, M. F. Abdul
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [30] Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion
    R. Gorenflo
    A. Vivoli
    F. Mainardi
    Journal of Mathematical Sciences, 2006, 132 (5) : 614 - 628