Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning

被引:1576
|
作者
Coudray, Nicolas [1 ,2 ]
Ocampo, Paolo Santiago [3 ]
Sakellaropoulos, Theodore [4 ]
Narula, Navneet [3 ]
Snuderl, Matija [3 ]
Fenyo, David [5 ,6 ]
Moreira, Andre L. [3 ,7 ]
Razavian, Narges [8 ,9 ]
Tsirigos, Aristotelis [1 ,3 ]
机构
[1] NYU, Sch Med, Appl Bioinformat Labs, New York, NY 10003 USA
[2] NYU, Sch Med, Dept Cell Biol, Skirball Inst, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Pathol, New York, NY 10003 USA
[4] Natl Tech Univ Athens, Sch Mech Engn, Zografos, Greece
[5] NYU, Sch Med, Inst Syst Genet, New York, NY USA
[6] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY USA
[7] NYU, Ctr Biospecimen Res & Dev, New York, NY USA
[8] NYU, Sch Med, Dept Populat Hlth, New York, NY 10003 USA
[9] NYU, Sch Med, Ctr Healthcare Innovat & Delivery Sci, New York, NY 10003 USA
关键词
TARGETED THERAPY; NEURAL-NETWORKS; EGFR MUTATION; LKB1; ADENOCARCINOMAS; INACTIVATION; SOCIETY; PROMISE; KRAS;
D O I
10.1038/s41591-018-0177-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and subtype of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep convolutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue. The performance of our method is comparable to that of pathologists, with an average area under the curve (AUC) of 0.97. Our model was validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained the network to predict the ten most commonly mutated genes in LUAD. We found that six of them-STK11, EGFR, FAT1, SETBP1, KRAS and TP53-can be predicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population. These findings suggest that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations. Our approach can be applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH.
引用
收藏
页码:1559 / +
页数:11
相关论文
共 50 条
  • [1] Classification and Mutation Prediction from Non-Small Cell Lung Cancer Histopathology Images Using Deep Learning
    Ocampo, P.
    Moreira, A.
    Coudray, N.
    Sakellaropoulos, T.
    Narula, N.
    Snuderl, M.
    Fenyo, D.
    Razavian, N.
    Tsirigos, A.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S562 - S562
  • [2] Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
    Nicolas Coudray
    Paolo Santiago Ocampo
    Theodore Sakellaropoulos
    Navneet Narula
    Matija Snuderl
    David Fenyö
    Andre L. Moreira
    Narges Razavian
    Aristotelis Tsirigos
    [J]. Nature Medicine, 2018, 24 : 1559 - 1567
  • [3] Deep learning for the classification of small cell and non-small cell lung cancer
    Kriegsmann, K.
    Haag, C.
    Weis, C. -A.
    Steinbuss, G.
    Kriegsmann, M.
    [J]. ONCOLOGY RESEARCH AND TREATMENT, 2020, 43 (SUPPL 4) : 144 - 144
  • [4] Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning
    Chen, Mingyu
    Zhang, Bin
    Topatana, Win
    Cao, Jiasheng
    Zhu, Hepan
    Juengpanich, Sarun
    Mao, Qijiang
    Yu, Hong
    Cai, Xiujun
    [J]. NPJ PRECISION ONCOLOGY, 2020, 4 (01)
  • [5] Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning
    Mingyu Chen
    Bin Zhang
    Win Topatana
    Jiasheng Cao
    Hepan Zhu
    Sarun Juengpanich
    Qijiang Mao
    Hong Yu
    Xiujun Cai
    [J]. npj Precision Oncology, 4
  • [6] Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer
    Yibo Zhang
    Zijian Yang
    Ruanqi Chen
    Yanli Zhu
    Li Liu
    Jiyan Dong
    Zicheng Zhang
    Xujie Sun
    Jianming Ying
    Dongmei Lin
    Lin Yang
    Meng Zhou
    [J]. npj Digital Medicine, 7
  • [7] Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer
    Zhang, Yibo
    Yang, Zijian
    Chen, Ruanqi
    Zhu, Yanli
    Liu, Li
    Dong, Jiyan
    Zhang, Zicheng
    Sun, Xujie
    Ying, Jianming
    Lin, Dongmei
    Yang, Lin
    Zhou, Meng
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [8] Non-small cell lung cancer diagnosis aid with histopathological images using Explainable Deep Learning techniques
    Civit-Masot, Javier
    Banuls-Beaterio, Alejandro
    Dominguez-Morales, Manuel
    Rivas-Perez, Manuel
    Munoz-Saavedra, Luis
    Rodriguez Corral, Jose M.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [9] Deep Learning-based Lung dose Prediction Using Chest X-ray Images in Non-small Cell Lung Cancer Radiotherapy
    Aoyama, Takahiro
    Shimizu, Hidetoshi
    Koide, Yutaro
    Kamezawa, Hidemi
    Fukunaga, Jun-Ichi
    Kitagawa, Tomoki
    Tachibana, Hiroyuki
    Suzuki, Kojiro
    Kodaira, Takeshi
    [J]. JOURNAL OF MEDICAL PHYSICS, 2024, 49 (01) : 33 - 40
  • [10] Prediction of EGFR Mutation Status in Non-Small Cell Lung Cancer Based on Ensemble Learning
    Feng, Youdan
    Song, Fan
    Zhang, Peng
    Fan, Guangda
    Zhang, Tianyi
    Zhao, Xiangyu
    Ma, Chenbin
    Sun, Yangyang
    Song, Xiao
    Pu, Huangsheng
    Liu, Fei
    Zhang, Guanglei
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13