Prediction of EGFR Mutation Status in Non-Small Cell Lung Cancer Based on Ensemble Learning

被引:4
|
作者
Feng, Youdan [1 ]
Song, Fan [1 ]
Zhang, Peng [1 ]
Fan, Guangda [1 ]
Zhang, Tianyi [1 ]
Zhao, Xiangyu [1 ]
Ma, Chenbin [1 ]
Sun, Yangyang [1 ]
Song, Xiao [2 ]
Pu, Huangsheng [3 ]
Liu, Fei [4 ]
Zhang, Guanglei [1 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Beijing, Peoples R China
[2] Shanxi Med Univ, Sch Med Imaging, Taiyuan, Peoples R China
[3] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Beijing Adv Informat & Ind Technol Res Inst, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
non-small cell lung cancer; radiogenomics; EGFR; computed tomography; ensemble learning; CLINICAL-RESPONSE; TEXTURE ANALYSIS; OSIMERTINIB; FEATURES;
D O I
10.3389/fphar.2022.897597
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Objectives: We aimed to identify whether ensemble learning can improve the performance of the epidermal growth factor receptor (EGFR) mutation status predicting model.Methods: We retrospectively collected 168 patients with non-small cell lung cancer (NSCLC), who underwent both computed tomography (CT) examination and EGFR test. Using the radiomics features extracted from the CT images, an ensemble model was established with four individual classifiers: logistic regression (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost). The synthetic minority oversampling technique (SMOTE) was also used to decrease the influence of data imbalance. The performances of the predicting model were evaluated using the area under the curve (AUC).Results: Based on the 26 radiomics features after feature selection, the SVM performed best (AUCs of 0.8634 and 0.7885 on the training and test sets, respectively) among four individual classifiers. The ensemble model of RF, XGBoost, and LR achieved the best performance (AUCs of 0.8465 and 0.8654 on the training and test sets, respectively).Conclusion: Ensemble learning can improve the model performance in predicting the EGFR mutation status of patients with NSCLC, showing potential value in clinical practice.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer
    Li, Shu
    Ding, Changwei
    Zhang, Hao
    Song, Jiangdian
    Wu, Lei
    [J]. MEDICAL PHYSICS, 2019, 46 (10) : 4545 - 4552
  • [2] 18F-FDG uptake for prediction EGFR mutation status in non-small cell lung cancer
    Guan, Jian
    Chen, Longhua
    Xiao, Nanjie
    Chen, Min
    Zhang, Y.
    Li, Lu
    Yang, Mi
    Li, Qinyang
    Dai, Yongmei
    Zhang, Chi
    Liu, Laiyu
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (15)
  • [3] THE ROLE OF RADIOGENOMICS IN EGFR AND KRAS MUTATION STATUS PREDICTION AMONG NON-SMALL CELL LUNG CANCER PATIENTS
    Freitas, C.
    Pereira, T.
    Pinheiro, G.
    Dias, C.
    Hespanhol, V.
    Costa, J. L.
    Cunha, A.
    Oliveira, H.
    [J]. CHEST, 2020, 157 (06) : 16A - 16A
  • [4] EGFR mutation status on brain metastases from non-small cell lung cancer
    Hsu, Fred
    De Caluwe, Alex
    Anderson, David
    Nichol, Alan
    Toriumi, Ted
    Ho, Cheryl
    [J]. LUNG CANCER, 2016, 96 : 101 - 107
  • [5] 18F-FDG uptake for prediction EGFR mutation status in non-small cell lung cancer
    Guan, Jian
    Xiao, Nan J.
    Chen, Min
    Zhou, Wen L.
    Zhang, Yao W.
    Wang, Shuang
    Dai, Yong M.
    Li, Lu
    Zhang, Yue
    Li, Qin Y.
    Li, Xiang Z.
    Yang, Mi
    Wu, Hu B.
    Chen, Long H.
    Liu, Lai Y.
    [J]. MEDICINE, 2016, 95 (30)
  • [6] EGFR mutation status in a series of Turkish non-small cell lung cancer patients
    Calibasi-Kocal, Gizem
    Amirfallah, Arsalan
    Sever, Tolga
    Unal, Olcun Umit
    Gurel, Duygu
    Oztop, Ilhan
    Ellidokuz, Hulya
    Basbinar, Yasemin
    [J]. BIOMEDICAL REPORTS, 2020, 13 (02) : 1 - 9
  • [7] EGFR Mutation Testing in Non-Small Cell Lung Cancer
    Sriram, Krishna B.
    Francis, Santiyagu M. Savarimuthu
    Tan, Maxine E.
    Bowman, Rayleen V.
    Yang, Ian A.
    Fong, Kwun M.
    [J]. CURRENT RESPIRATORY MEDICINE REVIEWS, 2010, 6 (04) : 310 - 321
  • [8] Ensemble Strategies for EGFR Mutation Status Prediction in Lung Cancer
    Malafaia, Mafalda
    Pereira, Tania
    Silva, Francisco
    Morgado, Joana
    Cunha, Antonio
    Oliveira, Helder P.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3285 - 3288
  • [9] Depression and EGFR mutation status in stage IV non-small cell lung cancer.
    Pirl, W. F.
    Greer, J.
    Bemis, H.
    Heist, R. S.
    Gallagher, E.
    Sequist, L. V.
    Engelman, J. A.
    Traeger, L.
    Lennes, I. T.
    Temel, J. S.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (15)
  • [10] Fibrinogen is associated with EGFR mutation status and lymphatic metastasis in non-small cell lung cancer
    Guan, Jian
    Xiao, Nan
    Qiu, Chun
    Li, Qin
    Chen, Min
    Zhang, Yao
    Dai, Yong
    Li, Lu
    Zhang, Yue
    Yang, Mi
    Chen, Long
    Liu, Lai Yu
    [J]. ONCOLOGY LETTERS, 2019, 17 (01) : 739 - 746