Inhibition of ammonia-oxidizing bacteria promotes the growth of ammonia-oxidizing archaea in ammonium-rich alkaline soils

被引:5
|
作者
Yin, Chang [1 ]
Fan, Xiaoping [1 ]
Chen, Hao [1 ]
Ye, Mujun [1 ]
Yan, Guochao [1 ]
Li, Tingqiang [1 ]
Peng, Hongyun [1 ]
Shengzhe, E. [2 ]
Che, Zongxian [2 ]
Wakelin, Steven A. [3 ]
Liang, Yongchao [1 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R China
[2] Gansu Acad Agr Sci, Inst Soil & Fertilizer & Water Saving Agr, Lanzhou 730070, Peoples R China
[3] Scion Res, POB 29237, Christchurch 8011, New Zealand
基金
中国国家自然科学基金;
关键词
community structure; 3,4-dimethylpyrazole phosphate; niche differentiation; 1-octyne; substrate affinity; tolerance threshold; 3,4-DIMETHYLPYRAZOLE PHOSPHATE; NITROSOSPHAERA-VIENNENSIS; NICHE DIFFERENTIATION; NITRIFICATION; DIVERSITY; SPECIALIZATION; CULTIVATION; PHYSIOLOGY; OXIDATION; KINETICS;
D O I
10.1016/S1002-0160(21)60048-6
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH4+)-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH4 concentration (200 mu g N g(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH4+ amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH4+-rich alkaline soils.
引用
收藏
页码:532 / 542
页数:11
相关论文
共 50 条
  • [21] Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
    Li-Mei Zhang
    Hang-Wei Hu
    Ju-Pei Shen
    Ji-Zheng He
    The ISME Journal, 2012, 6 : 1032 - 1045
  • [22] Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA
    Adair, Karen L.
    Schwartz, Egbert
    MICROBIAL ECOLOGY, 2008, 56 (03) : 420 - 426
  • [23] A Review of Ammonia-Oxidizing Archaea and Anaerobic Ammonia-Oxidizing Bacteria in the Aquaculture Pond Environment in China
    Lu, Shimin
    Liu, Xingguo
    Liu, Chong
    Cheng, Guofeng
    Zhou, Runfeng
    Li, Yayuan
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [24] Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting
    Yamamoto, Nozomi
    Otawa, Kenichi
    Nakai, Yutaka
    MICROBIAL ECOLOGY, 2010, 60 (04) : 807 - 815
  • [25] Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting
    Nozomi Yamamoto
    Kenichi Otawa
    Yutaka Nakai
    Microbial Ecology, 2010, 60 : 807 - 815
  • [26] Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid
    Cycon, Mariusz
    Piotrowska-Seget, Zofia
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [27] Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest
    Zhang, Li-Mei
    Wang, Mu
    Prosser, James I.
    Zheng, Yuan-Ming
    He, Ji-Zheng
    FEMS MICROBIOLOGY ECOLOGY, 2009, 70 (02) : 208 - 217
  • [28] Evidence that Ammonia-Oxidizing Archaea are More Abundant than Ammonia-Oxidizing Bacteria in Semiarid Soils of Northern Arizona, USA
    Karen L. Adair
    Egbert Schwartz
    Microbial Ecology, 2008, 56 : 420 - 426
  • [29] Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors
    Tong Zhang
    Lin Ye
    Amy Hin Yan Tong
    Ming-Fei Shao
    Si Lok
    Applied Microbiology and Biotechnology, 2011, 91 : 1215 - 1225
  • [30] Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems
    Al-Ajeel, Sarah
    Spasov, Emilie
    Sauder, Laura A.
    McKnight, Michelle M.
    Neufeld, Josh D.
    WATER RESEARCH X, 2022, 15