Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation

被引:111
|
作者
Attia, Nour F. [1 ,2 ]
Jung, Minji [1 ]
Park, Jaewoo [1 ]
Jang, Haenam [1 ]
Lee, Kiyoung [3 ]
Oh, Hyunchul [1 ,4 ]
机构
[1] Gyeongnam Natl Univ Sci & Technol GNTECH, Dept Energy Engn, Jinju 52725, South Korea
[2] Natl Inst Stand, Chem Div, Fire Protect Lab, Giza 12211, Egypt
[3] Kyungpook Natl Univ, Sch Nano & Mat Sci & Engn, Sangju 37224, Gyeongbuk, South Korea
[4] Future Convergence Technol Res Inst, Jinju 52725, South Korea
基金
新加坡国家研究基金会;
关键词
Activated carbon materials; Flexible nanoporous carbon cloth; H-2 and CH4 storage; Greenhouse gas; CO2/CH4; selectivity; METAL-ORGANIC FRAMEWORKS; HIGH-SURFACE-AREA; HYDROGEN-STORAGE; METHANE STORAGE; POROUS CARBONS; PORE STRUCTURE; VISCOUS RAYON; ADSORPTION; GAS; CAPTURE;
D O I
10.1016/j.cej.2019.122367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Innovative tools are needed for the synthesis of smart, new, efficient, and safe nanoporous carbon materials for energy gas storage. Here, a flexible nanoporous activated carbon cloth was developed. Polypyrrole nanoparticles were polymerized in dispersed form on commercial viscose rayon cloth fiber surfaces. Then, the material was carbonized and activated by physical and chemical activation methods applied individually. Chemical activation conditions were varied and optimized. This produced a high porosity flexible nanoporous carbon textile with a surface area of similar to 2000 m(2) g(-1), total pore volume of 0.85 cm(3) g(-1), and high nitrogen content. The new flexible nanoporous carbon cloth achieved superior H-2 and CH4 storage capacities and CO2 capture compared to so-farreported activated carbon cloth, and values were comparable to or higher than those reported for powder activated carbons. Excess H-2 uptake values were 4.0 and 0.173 wt% at 77 K and 298 K at 20 bar, respectively, and CH4 storage amounted to 7.5 mmol g(-1) at 20 bar and 298 K, which is among the highest reported values for porous carbon materials. CO2 uptake values were 4.2 and 14.3 mmol g(-1) at 1 and 20 bar at 298 K, respectively, which are values superior to those previously reported for activated carbon cloth. Hence, the flexible nanoporous activated carbon cloth is effective for greenhouse gas (i.e., CO2) uptake during post- and pre-combustion conditions. Separation selectivity for CO2/CH4 binary mixtures was evaluated based on the ideal adsorbed solution theory (IAST) model and a high value of 15.9 was achieved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Adsorption separation of CO2, CH4, and N2 on microwave activated carbon
    Yi, Honghong
    Li, Fenrong
    Ning, Ping
    Tang, Xiaolong
    Peng, Jinhui
    Li, Yundong
    Deng, Hua
    CHEMICAL ENGINEERING JOURNAL, 2013, 215 : 635 - 642
  • [32] Selective separation of CH4 and CO2 using membrane contactors
    Hidalgo, D.
    Sanz-Bedate, S.
    Martin-Marroquin, J. M.
    Castro, J.
    Antolin, G.
    RENEWABLE ENERGY, 2020, 150 : 935 - 942
  • [33] Supercapacitor and room temperature H, CO2 and CH4 gas storage characteristics of commercial nanoporous activated carbon
    Ramesh, A.
    Jeyavelan, M.
    Balan, J. A. Alex Rajju
    Srivastava, O. N.
    Hudson, M. Sterlin Leo
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 152
  • [34] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178
  • [35] Molecular Dynamics Simulation of the Separation of CH4/CO2 by Nanoporous Graphene
    Wen Bo-Yao
    Sun Cheng-Zhen
    Bai Bo-Feng
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (02) : 261 - 267
  • [36] HIGH ADSORPTION CAPACITIES OF CO2 OR CH4 ON POROUS CARBON MATERIALS WITH THE ULTRAMICROPORES
    Wei, Yongjie
    Wang, Junchao
    Gu, Chen
    Ma, Zhengfei
    FRESENIUS ENVIRONMENTAL BULLETIN, 2020, 29 (08): : 6617 - 6625
  • [37] Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs
    Liu, Bei
    Smit, Berend
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18): : 8515 - 8522
  • [38] Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures: Experiments and modeling
    Le Cong, Tanh
    Dagaut, Philippe
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 427 - 435
  • [39] CH4/CO2 Mixture Adsorption on a Characterized Activated Carbon
    Pino, David
    Bessieres, David
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2017, 62 (04): : 1475 - 1480
  • [40] ADSORPTION AND SEPARATION OF CO2 AND CH4 ON ACTIVATED CARBON MODIFIED BY ACETIC ACID
    Song, Xue
    Wang, Li'ao
    Li, Yifu
    Zeng, Yunmin
    Ma, Xu
    Zhan, Xinyuan
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (09): : 6400 - 6410