Goodness-of-fit tests in semiparametric transformation models

被引:11
|
作者
Colling, Benjamin [1 ]
Van Keilegom, Ingrid [1 ]
机构
[1] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Bootstrap; Goodness-of-fit; Local polynomial smoothing; Profile likelihood; Semiparametric regression; Transformation model; NONPARAMETRIC REGRESSION; BOOTSTRAP; SMOOTH;
D O I
10.1007/s11749-015-0448-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a semiparametric transformation model of the form , where is a univariate dependent variable, is a -dimensional covariate, and is independent of and has mean zero. We assume that is a parametric family of strictly increasing functions, while is an unknown regression function. The goal of the paper is to develop tests for the null hypothesis that belongs to a certain parametric family of regression functions. We propose a Kolmogorov-Smirnov and a Cram,r-von Mises type test statistic, which measure the distance between the distribution of estimated under the null hypothesis and the distribution of without making use of this null hypothesis. The estimated distributions are based on a profile likelihood estimator of and a local polynomial estimator of . The limiting distributions of these two test statistics are established under the null hypothesis and under a local alternative. We use a bootstrap procedure to approximate the critical values of the test statistics under the null hypothesis. Finally, a simulation study is carried out to illustrate the performance of our testing procedures, and we apply our tests to data on the scattering of sunlight in the atmosphere.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 50 条
  • [1] Goodness-of-fit tests in semiparametric transformation models
    Benjamin Colling
    Ingrid Van Keilegom
    [J]. TEST, 2016, 25 : 291 - 308
  • [2] Goodness-of-fit tests for semiparametric biased sampling models
    Gilbert, PB
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 118 (1-2) : 51 - 81
  • [3] Goodness-of-fit tests in semiparametric transformation models using the integrated regression function
    Coiling, Benjamin
    Van Keilegom, Ingrid
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 160 : 10 - 30
  • [4] Goodness-of-fit tests for semiparametric models with multiple event-time data
    Choi, ST
    Jin, ZZ
    Ying, ZL
    [J]. STATISTICA SINICA, 2001, 11 (03) : 723 - 736
  • [5] Goodness-of-fit tests for mixed models
    Ritz, C
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 443 - 458
  • [6] A Class of Goodness-of-fit Tests Based on Transformation
    Meintanis, Simos G.
    Jimenez Gamero, Ma Dolores
    Alba-Fernandez, V.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) : 1708 - 1735
  • [7] Goodness-of-fit tests in conditional duration models
    Meintanis, Simos G.
    Milosevic, Bojana
    Obradovic, Marko
    [J]. STATISTICAL PAPERS, 2020, 61 (01) : 123 - 140
  • [8] Alternative Goodness-of-Fit Tests for Linear Models
    Christensen, Ronald
    Sun, Siu Kei
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 291 - 301
  • [9] Comments on: Goodness-of-fit tests in mixed models
    Jiming Jiang
    Thuan Nguyen
    [J]. TEST, 2009, 18 : 248 - 255
  • [10] Goodness-of-fit test for specification of semiparametric copula dependence models
    Zhang, Shulin
    Okhrin, Ostap
    Zhou, Qian M.
    Song, Peter X. -K.
    [J]. JOURNAL OF ECONOMETRICS, 2016, 193 (01) : 215 - 233