Restricting lithium-ion migration via Lewis base groups in hole transporting materials for efficient and stable perovskite solar cells

被引:14
|
作者
Bao, Huayu [1 ,2 ]
Liu, Hongli [1 ,2 ]
Wang, Shirong [1 ,2 ]
Ma, Junfu [1 ,2 ]
Li, Xianggao [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
关键词
Ion migration; Lewis base groups; Coordination effect; Hole transporting materials; Perovskite solar cells; COORDINATION; SPECTROSCOPY; DEGRADATION; STABILITY; LI+;
D O I
10.1016/j.cej.2021.133534
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Li-TFSI as an indispensable dopant for hole transporting materials (HTMs) suffers from inherent hydrophilicity and ion migration, which seriously damages the stability of perovskite solar cells (PSCs). Herein, a facile design strategy is proposed to restrict ion migration of Li+ by introducing different Lewis base groups (pyridine, 1,10phenanthroline and pyrazine) into HTMs. Owing to the coordination effect of Lewis base groups to Li+, the doped HTMs (Pyrd-TPA, Phen-TPA and Pyra-TPA) exhibit significantly enhanced conjugation and hole mobility. Particularly, theoretical calculation and Fourier-transform infrared spectroscopy (FTIR) results demonstrate that Phen-TPA forms the strongest coordination with Li+ due to the most negative electrostatic potential region existing around 1,10-phenanthroline group. The generated Li+-coordinated Phen-TPA contributes to preferable energy levels, morphology uniformity and hydrophobicity. Element mapping analysis shows that Li-ion migration in doped Phen-TPA is restricted effectively. In addition, Phen-TPA can also passivate the perovskite surface defects dramatically, which facilitates more efficient charge transfer to hole transporting layer. Consequently, PSCs based on Phen-TPA achieve promising power conversion efficiency (PCE) of 20.02% with negligible hysteresis effect. More importantly, it maintains over 88% of the initial PCE after 1056 h storage in ambient condition of 40-60% RH and about 81% of the original efficiency after 264 h storage at 60-70?degrees C. This work systematically revealed the relation between coordination ability of HTMs and the performance of PSCs for the first time, which provides new design strategies to develop efficient and stable PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Molecular Doping of a Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells
    Luo, Junsheng
    Zhu, Jinqing
    Lin, Fangyan
    Xia, Jianxing
    Yang, Hua
    Yang, Jinyu
    Wang, Ruilin
    Yuan, Junyu
    Wan, Zhongquan
    Li, Ning
    Brabec, Christoph J.
    Jia, Chunyang
    CHEMISTRY OF MATERIALS, 2022, 34 (04) : 1499 - 1508
  • [22] Rationally designed hole transporting layer system for efficient and stable perovskite solar cells
    Lee, Jaehee
    Son, Taewoong
    Min, Kyeongbin
    Park, Seongjun
    Kim, Youngwoong
    Seo, Jangwon
    ECOMAT, 2023, 5 (11)
  • [23] Lewis base multisite ligand engineering in efficient and stable perovskite solar cells
    Ma, Danqing
    He, Dongmei
    Zhu, Qing
    Liu, Xinxing
    Yu, Yue
    Shai, Xuxia
    Zhang, Zhengfu
    Zhang, Sam
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 277 - 291
  • [24] Lewis base multisite ligand engineering in efficient and stable perovskite solar cells
    Danqing Ma
    Dongmei He
    Qing Zhu
    Xinxing Liu
    Yue Yu
    Xuxia Shai
    Zhengfu Zhang
    Sam Zhang
    Jing Feng
    Jianhong Yi
    Jiangzhao Chen
    Journal of Energy Chemistry, 2024, 99 (12) : 277 - 291
  • [25] Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells
    Drigo, Nikita
    Roldan-Carmona, Cristina
    Franckevicius, Marius
    Lin, Kun-Han
    Gegevicius, Rokas
    Kim, Hobeom
    Schouwink, Pascal A.
    Sutanto, Albertus A.
    Olthof, Selina
    Sohail, Muhammad
    Meerholz, Klaus
    Gulbinas, Vidmantas
    Corminboeuf, Clemence
    Paek, Sanghyun
    Nazeeruddin, Mohammad Khaja
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (04) : 1792 - 1800
  • [26] Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells
    Rakstys, Kasparas
    Abate, Antonio
    Dar, M. Ibrahim
    Gao, Peng
    Jankauskas, Vygintas
    Jacopin, Gwenole
    Kamarauskas, Egidijus
    Kazim, Samrana
    Ahmad, Shahzada
    Graetzel, Michael
    Nazeeruddin, Mohammad Khaja
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (51) : 16172 - 16178
  • [27] Core Fusion Engineering of Hole-Transporting Materials for Efficient Perovskite Solar Cells
    Liang, Lusheng
    Wang, Yang
    Zhang, Zilong
    Wang, Junwei
    Feng, Kui
    Ma, Suxiang
    Li, Yongchun
    Guo, Xugang
    Gao, Peng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) : 1250 - 1258
  • [28] Low-Cost Synthesis of Hole Transporting Materials for Efficient Perovskite Solar Cells
    Mirruzzo, Valentina
    Di Carlo, Aldo
    CHEM, 2017, 2 (05): : 612 - 613
  • [29] Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells
    Sandoval-Torrientes, R.
    Zimmermann, I.
    Calbo, J.
    Arago, J.
    Santos, J.
    Orti, E.
    Martin, N.
    Nazeeruddin, M. K.
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5944 - 5951
  • [30] Novel spiro-based hole transporting materials for efficient perovskite solar cells
    Li, Ming-Hsien
    Hsu, Che-Wei
    Shen, Po-Shen
    Cheng, Hsin-Min
    Chi, Yun
    Chen, Peter
    Guo, Tzung-Fang
    CHEMICAL COMMUNICATIONS, 2015, 51 (85) : 15518 - 15521