Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA

被引:44
|
作者
McLean, KJ [1 ]
Scrutton, NS [1 ]
Munro, AW [1 ]
机构
[1] Univ Leicester, Dept Biochem, Leicester LE1 7RH, Leics, England
关键词
adrenodoxin reductase; flavoprotein; FprA; potentiometry; stopped-flow kinetics;
D O I
10.1042/BJ20021692
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genome sequence of the pathogenic bacterium Mycobacterium tuberculosis revealed numerous cytochrome P450 enzymes, which require accessory redox enzymes for catalytic function (ferredoxin reductase and ferredoxin). The most likely ferredoxin reductase is encoded by fprA, and its structure resembles eukaryotic adrenodoxin reductases. We have cloned, expressed and purified the flavoenzyme product of the fprA gene in Escherichia coli. FprA reduces various electron acceptors using either NADPH or NADH as the electron donor, but discriminates in favour of NADPH (apparent K-m for NADH 50.6 +/- 3.1 muM; NADPH = 4.1 +/- 0.3 muM from ferricyanide reduction experiments). Stopped-flow studies of reduction of the FprA FAD by NADPH demonstrate increased flavin reduction rate at low NADPH concentration (< 200 muM), consistent with the presence of a second, kinetically distinct and inhibitory, pyridine nucleotide-binding site, similar to that identified in human cytochrome P450 reductase [Gutierrez, Lian, Wolf, Scrutton and Roberts (2001) Biochemistry 40, 1964-1975]. Flavin reduction by NADH is slower than with NADPH and displays hyperbolic dependence on NADH concentration [maximal reduction rate (k(red))=25.4+/-0.7s(-1), apparent K-d = 42.9+/-4.6 muM]. Flavin reoxidation by molecular oxygen is more rapid for NADH-reduced enzyme. Reductive titrations show that the enzyme forms a species with spectral characteristics typical of a neutral (blue) FAD semiquinone only on reduction with NADPH, consistent with EPR studies. The second order dependence of semiquinone formation on the concentration of FprA indicates a disproportionation reaction involving oxidized and two-electron-reduced FprA. Titration of FprA with dithionite converts oxidized FAD into the hydroquinone form; the flavin semiquinone is not populated under these conditions. The midpoint reduction potential for the two electron couple is - 235 +/-5 mV (versus the normal hydrogen electrode), similar to that for adrenodoxin reductase (- 274 mV). Our data provide a thermodynamic and transient kinetic framework for catalysis by FprA, and complement recent spectrophotometric and steady-state studies of the enzyme [Fischer, Raimondi, Aliverti and Zanetti (2002) Eur. J. Biochem. 269, 3005-3013].
引用
收藏
页码:317 / 327
页数:11
相关论文
共 50 条
  • [21] Mycobacterium tuberculosis β-ketoacyl-ACP reductase:: α-Secondary kinetic isotope effects and kinetic and equilibrium mechanisms of substrate binding
    Silva, Rafael G.
    Rosado, Leonardo A.
    Santos, Diogenes S.
    Basso, Luiz A.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2008, 471 (01) : 1 - 10
  • [22] Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase
    Olteanu, H
    Wolthers, KR
    Munro, AW
    Scrutton, NS
    Banerjee, R
    BIOCHEMISTRY, 2004, 43 (07) : 1988 - 1997
  • [23] Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis
    Geluk, A
    van Meijgaarden, KE
    Franken, KLMC
    Subronto, YW
    Wieles, B
    Arend, SM
    Sampaio, EP
    de Boer, T
    Faber, WR
    Naafs, B
    Ottenhoff, THM
    INFECTION AND IMMUNITY, 2002, 70 (05) : 2544 - 2548
  • [24] Purification and characterization of a functionally active Mycobacterium tuberculosis pyrroline-5-carboxylate reductase
    Yang, YP
    Xu, SF
    Zhang, M
    Jin, RL
    Zhang, L
    Bao, HL
    Wang, HH
    PROTEIN EXPRESSION AND PURIFICATION, 2006, 45 (01) : 241 - 248
  • [25] Characterization of a new member of the flavoprotein disulfide reductase family of enzymes from Mycobacterium tuberculosis
    Argyrou, A
    Vetting, MW
    Blanchard, JS
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (50) : 52694 - 52702
  • [26] Kinetic Characterization of Hydrolysis of Nitrocefin, Cefoxitin, and Meropenem by β-Lactamase from Mycobacterium tuberculosis
    Chow, Carmen
    Xu, Hua
    Blanchard, John S.
    BIOCHEMISTRY, 2013, 52 (23) : 4097 - 4104
  • [27] Kinetic and Isotopic Characterization of L-Proline Dehydrogenase from Mycobacterium tuberculosis
    Serrano, Hector
    Blanchard, John S.
    BIOCHEMISTRY, 2013, 52 (29) : 5009 - 5015
  • [28] Characterization of recombinant adrenodoxin reductase homologue (Arh1p) from yeast -: Implication in in vitro cytochrome P45011β monooxygenase system
    Lacour, T
    Achstetter, T
    Dumas, B
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) : 23984 - 23992
  • [29] Kinetic and spectroscopic characterization of tungsten-substituted DMSO reductase from Rhodobacter sphaeroides
    Pacheco, Josue
    Niks, Dimitri
    Hille, Russ
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2018, 23 (02): : 295 - 301
  • [30] Kinetic and spectroscopic characterization of tungsten-substituted DMSO reductase from Rhodobacter sphaeroides
    Josué Pacheco
    Dimitri Niks
    Russ Hille
    JBIC Journal of Biological Inorganic Chemistry, 2018, 23 : 295 - 301