Intermittency in the velocity distribution of heavy particles in turbulence

被引:96
|
作者
Bec, J. [1 ]
Biferale, L. [2 ,3 ]
Cencini, M. [4 ,5 ]
Lanotte, A. S. [6 ,7 ]
Toschi, F. [8 ,9 ,10 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Cassiopee, F-06300 Nice, France
[2] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy
[4] Univ Roma La Sapienza, SMC Dept Phys, INFM, CNR, I-00185 Rome, Italy
[5] CNR, ISC, I-00185 Rome, Italy
[6] CNR, ISAC, I-00133 Rome, Italy
[7] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
[8] Eindhoven Univ Technol, Dept Phys, NL-5600 MB Eindhoven, Netherlands
[9] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[10] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
关键词
DIRECT NUMERICAL-SIMULATION; ISOTROPIC TURBULENCE; INERTIAL PARTICLES; COLLISION RATES; STATISTICS; ACCELERATION; UNIVERSALITY; DROPLETS; CLOUDS;
D O I
10.1017/S0022112010000029
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The statistics of velocity differences between pairs of heavy inertial point particles suspended in an incompressible turbulent flow is studied and found to be extremely intermittent. The problem is particularly relevant to the estimation of the efficiency of collisions among heavy particles in turbulence. We found that when particles are separated by distances within the dissipative subrange, the competition between regions with quiet regular velocity distributions and regions where very close particles have very different velocities (caustics) leads to a quasi bi-fractal behaviour of the particle velocity structure functions. Contrastingly, we show that for particles separated by inertial-range distances, the velocity-difference statistics can be characterized in terms of a local roughness exponent, which is a function of the scale-dependent particle Stokes number only. Results are obtained from high-resolution direct numerical simulations up to 2048(3) collocation points and with millions of particles for each Stokes number.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [21] INTERMITTENCY IN TURBULENCE
    LOHSE, D
    GROSSMANN, S
    PHYSICA A, 1993, 194 (1-4): : 519 - 531
  • [22] DISTRIBUTION OF RELATIVE VELOCITY IN TURBULENCE
    ONUKI, A
    PHYSICS LETTERS A, 1988, 127 (03) : 143 - 146
  • [23] Lagrangian velocity fluctuations in fully developed turbulence:: Scaling, intermittency, and dynamics
    Mordant, N
    Delour, J
    Léveque, E
    Michel, O
    Arnéodo, A
    Pinton, JF
    JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (5-6) : 701 - 717
  • [24] The velocity distribution of barotropic turbulence
    Bracco, A
    LaCasce, J
    Pasquero, C
    Provenzale, A
    PHYSICS OF FLUIDS, 2000, 12 (10) : 2478 - 2488
  • [25] Lagrangian Velocity Fluctuations in Fully Developed Turbulence: Scaling, Intermittency, and Dynamics
    N. Mordant
    J. Delour
    E. Léveque
    O. Michel
    A. Arnéodo
    J.-F. Pinton
    Journal of Statistical Physics, 2003, 113 : 701 - 717
  • [26] THE INTERMITTENCY OF TURBULENCE IN INTERSTELLAR CLOUDS - IMPLICATIONS FOR THE GAS KINETIC TEMPERATURE AND DECOUPLING OF HEAVY-PARTICLES FROM THE GAS MOTIONS
    FALGARONE, E
    PUGET, JL
    ASTRONOMY & ASTROPHYSICS, 1995, 293 (03) : 840 - 852
  • [27] Unified multifractal description of velocity increments statistics in turbulence:: Intermittency and skewness
    Chevillard, L.
    Castaing, B.
    Leveque, E.
    Arneodo, A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) : 77 - 82
  • [28] Intermittency of velocity time increments in turbulence -: art. no. 064501
    Chevillard, L
    Roux, SG
    Lévêque, E
    Mordant, N
    Pinton, JF
    Arnéodo, A
    PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [29] Acceleration of heavy particles in isotropic turbulence
    Zaichik, Leonid I.
    Alipchenkov, Vladimir M.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2008, 34 (09) : 865 - 868
  • [30] Lyapunov exponents of heavy particles in turbulence
    Bec, Jeremie
    Biferale, Luca
    Boffetta, Guido
    Cencini, Massimo
    Musacchio, Stefano
    Toschi, Federico
    PHYSICS OF FLUIDS, 2006, 18 (09)