Using derivative regularization in parameter estimation

被引:3
|
作者
McMasters, RL [1 ]
Beck, JV [1 ]
机构
[1] Michigan State Univ, Dept Engn Mech, E Lansing, MI 48823 USA
来源
INVERSE PROBLEMS IN ENGINEERING | 2000年 / 8卷 / 04期
关键词
derivative; regularization; parameter estimation; preconditioning; unbiased spline;
D O I
10.1080/174159700088027736
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The condition of the final set of equations in any parameter estimating method is a critical feature and can often determine the success or failure of the method used. This aspect of parameter estimation becomes especially critical when sensitivity coefficients for parameters being estimated are correlated, which is a characteristic of ill-posed problems. Various forms of regularization have been used in the past in the interest of enhancing stability in various parameter estimation methods. This research presents a new general method, called derivative regularization, which can be used to provide improved structure to any ill-posed time dependent parameter estimation problem. Most methods impart structure to the square sensitivity matrix ((XX)-X-T) by adding a regularization term. This research, introducing derivative regularization, uses the principle of matrix pre-multiplication to reduce the ill-conditioned nature of the matrix structure. While the additive forms of regularization generally introduce bias, the derivative regularization method presented here carries the advantage of being unbiased at the cost of larger estimation errors. The method adds structure by approximating the first and second derivatives of the sensitivity coefficients and the measured data. The gain in ability to compute parameters resulting from the use of this method is shown in quantitative form by comparing the condition number of the (XX)-X-T matrix for various cases.
引用
收藏
页码:365 / 390
页数:26
相关论文
共 50 条
  • [21] Variable Selection and Parameter Estimation with the Atan Regularization Method
    Wang, Yanxin
    Zhu, Li
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2016, 2016
  • [22] L-Curvature Based on Estimation of Regularization Parameter
    Xie Kai
    Lu Yanyu
    [J]. PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON IMAGE ANALYSIS & SIGNAL PROCESSING, 2009, 2009, : 32 - 35
  • [23] Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation
    Liao, Haiyong
    Ng, Michael K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) : 670 - 680
  • [24] Concurrent Learning for Parameter Estimation Using Dynamic State-Derivative Estimators
    Kamalapurkar, Rushikesh
    Reish, Benjamin
    Chowdhary, Girish
    Dixon, Warren E.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) : 3594 - 3601
  • [25] A spatial regularization approach to parameter estimation for a distributed watershed model
    Pokhrel, P.
    Gupta, H. V.
    Wagener, T.
    [J]. WATER RESOURCES RESEARCH, 2008, 44 (12)
  • [26] Optimal Regularization Parameter Estimation for Spectral Regression Discriminant Analysis
    Chen, Wei
    Shan, Caifeng
    de Haan, Gerard
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2009, 19 (12) : 1921 - 1926
  • [27] Resolution enhancement of video sequences with simultaneous estimation of the regularization parameter
    He, H
    Kondi, LP
    [J]. IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2003, PTS 1 AND 2, 2003, 5022 : 1123 - 1133
  • [28] Selection of regularization parameter in sparse inverse problems for DOA estimation
    Delmer, Alice
    Ferreol, Anne
    Larzabal, Pascal
    [J]. 9TH INTERNATIONAL CONFERENCE ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, NCMIP 2019, 2020, 1476
  • [29] Resolution enhancement of video sequences with simultaneous estimation of the regularization parameter
    He, H
    Kondi, LP
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2004, 13 (03) : 586 - 596
  • [30] Optimal constraint-based regularization for parameter estimation problems
    Nakama, Caroline S. M.
    Le Roux, Galo A. C.
    Zavala, Victor M.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2020, 139