Using derivative regularization in parameter estimation

被引:3
|
作者
McMasters, RL [1 ]
Beck, JV [1 ]
机构
[1] Michigan State Univ, Dept Engn Mech, E Lansing, MI 48823 USA
来源
INVERSE PROBLEMS IN ENGINEERING | 2000年 / 8卷 / 04期
关键词
derivative; regularization; parameter estimation; preconditioning; unbiased spline;
D O I
10.1080/174159700088027736
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The condition of the final set of equations in any parameter estimating method is a critical feature and can often determine the success or failure of the method used. This aspect of parameter estimation becomes especially critical when sensitivity coefficients for parameters being estimated are correlated, which is a characteristic of ill-posed problems. Various forms of regularization have been used in the past in the interest of enhancing stability in various parameter estimation methods. This research presents a new general method, called derivative regularization, which can be used to provide improved structure to any ill-posed time dependent parameter estimation problem. Most methods impart structure to the square sensitivity matrix ((XX)-X-T) by adding a regularization term. This research, introducing derivative regularization, uses the principle of matrix pre-multiplication to reduce the ill-conditioned nature of the matrix structure. While the additive forms of regularization generally introduce bias, the derivative regularization method presented here carries the advantage of being unbiased at the cost of larger estimation errors. The method adds structure by approximating the first and second derivatives of the sensitivity coefficients and the measured data. The gain in ability to compute parameters resulting from the use of this method is shown in quantitative form by comparing the condition number of the (XX)-X-T matrix for various cases.
引用
收藏
页码:365 / 390
页数:26
相关论文
共 50 条
  • [1] Regularization Using QR Factorization and the Estimation of the Optimal Parameter
    T. Kitagawa
    S. Nakata
    Y. Hosoda
    [J]. BIT Numerical Mathematics, 2001, 41 : 1049 - 1058
  • [2] Regularization using QR factorization and the estimation of the optimal parameter
    Kitagawa, T
    Nakata, S
    Hosoda, Y
    [J]. BIT, 2001, 41 (05): : 1049 - 1058
  • [3] Regularization parameter estimation for large-scale Tikhonov regularization using a priori information
    Renaut, Rosemary A.
    Hnetynkova, Iveta
    Mead, Jodi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3430 - 3445
  • [4] Bioimpedance Parameter Estimation using Fast Spectral Measurements and Regularization
    Ramirez-Chavarria, Roberto G.
    Quintana-Carapia, Gustavo
    Mueller, Matias I.
    Mattila, Robert
    Matatagui, Daniel
    Sanchez-Perez, Celia
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 521 - 526
  • [5] Sinusoidal Polynomial Parameter Estimation Using the Distribution Derivative
    Betser, Michael
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (12) : 4633 - 4645
  • [6] A Novel Estimation of the Regularization Parameter for ε-SVM
    Ortiz-Garcia, E. G.
    Gascon-Moreno, J.
    Salcedo-Sanz, S.
    Perez-Bellido, A. M.
    Portilla-Figueras, J. A.
    Carro-Calvo, L.
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 34 - 41
  • [7] A robust interactive estimation of the regularization parameter
    Lima, Williams A.
    Silva, Joao B. C.
    Santos, Darciclea F.
    Costa, Jesse C.
    [J]. GEOPHYSICS, 2019, 84 (03) : IM19 - IM33
  • [8] Regularization of Minimum Parameter Attitude Estimation
    Fraiture, Luc
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (03) : 1029 - 1034
  • [9] REGULARIZATION OF MINIMUM PARAMETER ATTITUDE ESTIMATION
    Fraiture, Luc
    [J]. THE F. LANDIS MARKLEY ASTRONAUTICS SYMPOSIUM, 2008, 132 : 83 - 94
  • [10] ESTIMATION OF THE REGULARIZATION PARAMETER IN LINEAR DISCRETE ILL-POSED PROBLEMS USING THE PICARD PARAMETER
    Levin, Eitan
    Meltzer, Alexander Y.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06): : A2741 - A2762