Electro-osmotic streaming on application of traveling-wave electric fields

被引:0
|
作者
Cahill, BP [1 ]
Heyderman, LJ
Gobrecht, J
Stemmer, A
机构
[1] Swiss Fed Inst Technol, Nanotechnol Grp, CH-8092 Zurich, Switzerland
[2] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 03期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe ac electro-osmotic flow of an aqueous electrolyte on application of a traveling-wave electric field. Depending on the frequency of the applied traveling wave, the interaction of the electric double layer charge and the tangential electric field leads to fluid flow in the direction of the traveling wave. We have derived two theoretical models that describe this flow as a function of the amplitude of the applied electric potential, the signal frequency, and the material properties of the system. The first is based on a capacitative model and is limited to frequencies much lower than the double layer relaxation frequency. The second is an analytical solution of the electrokinetic equations and is also valid at higher frequencies. We provide experimental evidence that streaming takes place on application of a traveling wave of potential by tracing the movements of fluorescent latex beads over a spiral electrode structure. Streaming takes place at applied potentials low enough for the method to be easily integrated into lab-on-a-chip devices.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] NUMERICAL ANALYSIS FOR ELECTRO-OSMOTIC CONSOLIDATION IN TWO-DIMENSIONAL ELECTRIC FIELD
    Rittirong, Amnart
    Shang, Julie Q.
    PROCEEDINGS OF THE EIGHTEENTH (2008) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 2, 2008, : 566 - +
  • [32] Velocity measurements inside the diffuse electric double layer in electro-osmotic flow
    Sadr, Reza
    Yoda, Minami
    Gnanaprakasam, Pradeep
    Conlisk, A. Terrence
    APPLIED PHYSICS LETTERS, 2006, 89 (04)
  • [33] Electromagnetic fields in air of traveling-wave currents above the earth
    Margetis, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) : 5870 - 5893
  • [34] Quantum model for traveling-wave electro-optical phase modulator
    Horoshko, D. B.
    Eskandary, M. M.
    Kilin, S. Ya
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (11) : 2744 - 2753
  • [35] 100 GHZ TRAVELING-WAVE ELECTRO-OPTIC PHASE MODULATOR
    NEES, J
    WILLIAMSON, S
    MOUROU, G
    APPLIED PHYSICS LETTERS, 1989, 54 (20) : 1962 - 1964
  • [36] INTERACTION OF NONPARALLEL FLOWS OF CHARGED-PARTICLES IN THE EXTERNAL ELECTRIC-FIELDS OF THE TYPE OF TRAVELING-WAVE
    KONOVALOV, VI
    TKACHENKO, VI
    CHECHKIN, AV
    UKRAINSKII FIZICHESKII ZHURNAL, 1993, 38 (02): : 236 - 242
  • [37] Impedance matching of traveling-wave thermoacoustic electric generating system
    Zhang J.
    Sun D.-M.
    Wang K.
    Luo K.
    Zhang N.
    Zou J.
    Sun, Da-Ming (sundaming@zju.edu.cn), 1600, Zhejiang University (51): : 494 - 499
  • [38] Development of a 5 kW traveling-wave thermoacoustic electric generator
    Bi, Tianjiao
    Wu, Zhanghua
    Zhang, Limin
    Yu, Guoyao
    Luo, Ercang
    Dai, Wei
    APPLIED ENERGY, 2017, 185 : 1355 - 1361
  • [39] Enhancement of electro-optic modulators using traveling-wave resonators
    Weldon, MAJ
    Davies, RJ
    Hum, SV
    Okoniewski, M
    OPTICAL TRANSMISSION SYSTEMS AND EQUIPMENT FOR WDM NETWORKING II, 2003, 5247 : 373 - 381
  • [40] Traveling-wave thermoacoustic refrigerator for room temperature application
    Wang, Xin
    Wu, Zhanghua
    Zhang, Limin
    Hu, Jianying
    Luo, Ercang
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2020, 120 : 90 - 96