Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries

被引:102
|
作者
Chu, Shiyong [1 ]
Zhang, Chunchen [1 ]
Xu, Hang [1 ]
Guo, Shaohua [1 ]
Wang, Peng [1 ]
Zhou, Haoshen [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Coll Engn & Appl Sci,Jiangsu Key Lab Artificial F, Nanjing 210093, Peoples R China
[2] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
基金
中国国家自然科学基金;
关键词
layered cathodes; pinning effect; sodium-ion batteries; structural stability; zero strain; POSITIVE ELECTRODE; METAL-OXIDE; PERFORMANCE; MECHANISM; PHASE; LI; MN; CO; MIGRATION; STORAGE;
D O I
10.1002/anie.202100917
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered oxides as the cathode materials of sodium-ion batteries are receiving extensive attention due to their high capacity and flexible composition. However, the layered cathode tends to be thermodynamically and electrochemically unstable during (de)sodiation. Herein, we propose the pinning effect and controllable pinning point in sodium storage layered cathodes to enhance the structural stability and achieve optimal electrochemical performance. 0 %, 2.5 % and 7.3 % transition-metal occupancies in Na-site as pinning points are obtained in Na0.67Mn0.5Co0.5-xFexO2. 2.5 % Na-site pinned by Fe3+ is beneficial to restrain the potential slab sliding and enhance the structural stability, resulting in an ultra-low volume variation of 0.6 % and maintaining the smooth two-dimensional channel for Na-ion transfer. The Na0.67Mn0.5Co0.4Fe0.1O2 cathode with the optimal Fe3+ pinning delivers outstanding cycle performance of over 1000 cycles and superior rate capability up to 10 C.
引用
收藏
页码:13366 / 13371
页数:6
相关论文
共 50 条
  • [41] Structure-property relationship in layered cathode materials for sodium-ion batteries
    Lee, Eungje
    Gutierrez, Arturo
    Slater, Michael
    Lu, Jun
    Kim, Youngsik
    Johnson, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [42] New 4V-Class and Zero-Strain Cathode Material for Na-Ion Batteries
    Kim, Jongsoon
    Yoon, Gabin
    Lee, Myeong Hwan
    Kim, Hyungsub
    Lee, Seongsu
    Kang, Kisuk
    CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7826 - 7832
  • [43] Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries
    Xu, Hang
    Jiang, Kezhu
    Zhang, Xueping
    Zhang, Xiaoyu
    Guo, Shaohua
    Zhou, Haoshen
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26817 - 26823
  • [44] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [45] Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: Structural evolution and anion redox
    Liu, Jiatu
    Kan, Wang Hay
    Ling, Chris D.
    JOURNAL OF POWER SOURCES, 2021, 481
  • [46] A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries
    Qi, Rui
    Chu, Mihai
    Zhao, Wenguang
    Chen, Ziwei
    Liao, Lei
    Zheng, Shisheng
    Chen, Xiping
    Xie, Lei
    Liu, Tongchao
    Ren, Yang
    Jin, Lei
    Amine, Khalil
    Pan, Feng
    Xiao, Yinguo
    NANO ENERGY, 2021, 88
  • [47] Low-Strain Reticular Sodium Manganese Oxide as an Ultrastable Cathode for Sodium-Ion Batteries
    Shi, Wen-Jing
    Zhang, Ding
    Meng, Xiao-Meng
    Bao, Chen-Xun
    Xu, Shou-Dong
    Chen, Liang
    Wang, Xiao-Min
    Liu, Shi-Bin
    Wu, Yu-Cheng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (12) : 14174 - 14184
  • [48] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    ADVANCED MATERIALS, 2024,
  • [49] Research Progress on Ordering Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Gan L.
    Yao H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (01): : 148 - 157
  • [50] Room-temperature synthesis of layered open framework cathode for sodium-ion batteries
    Zhang, Ruding
    Chen, Huixin
    Yue, Hongjun
    CHINESE CHEMICAL LETTERS, 2023, 34 (05)