Logic programming;
Stable model;
Progression;
First-order;
STABLE MODEL SEMANTICS;
D O I:
10.1016/j.artint.2017.06.001
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
In this paper, we propose a progression semantics for first-order normal logic programs, and show that it is equivalent to the well-known stable model (answer set) semantics. The progressional definition sheds new insights into Answer Set Programming (ASP), for instance, its relationships to Datalog, First-Order Logic (FOL) and Satisfiability Modulo Theories (SMT). As an example, we extend the notion of boundedness in Datalog for ASP, and show that it coincides with the notions of recursion-freeness and loop-freeness under program equivalence. In addition, we prove that boundedness precisely captures first-order definability for normal logic programs on arbitrary structures. Finally, we show that the progressional definition suggests an alternative translation from ASP to SMT, which yields a new way of implementing first-order ASP. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Johannes Kepler Univ Linz, Res Inst Symbol Computat, Altenbergerstr 69, A-4040 Linz, AustriaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenbergerstr 69, A-4040 Linz, Austria
Schreiner, Wolfgang
Steingartner, William
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Kosice, Fac Elect Engn & Informat, Letna 9, Kosice 04200, SlovakiaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenbergerstr 69, A-4040 Linz, Austria
Steingartner, William
Novitzka, Valerie
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Kosice, Fac Elect Engn & Informat, Letna 9, Kosice 04200, SlovakiaJohannes Kepler Univ Linz, Res Inst Symbol Computat, Altenbergerstr 69, A-4040 Linz, Austria
机构:
Univ Amsterdam, Inst Logic Language & Computat, Fac Sci, POB 94242, NL-1090 GE Amsterdam, NetherlandsUniv Amsterdam, Inst Logic Language & Computat, Fac Sci, POB 94242, NL-1090 GE Amsterdam, Netherlands