Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

被引:27
|
作者
Gu, Shu-Ying [1 ,2 ]
Jin, Sheng-Peng [1 ]
Gao, Xie-Feng [1 ]
Mu, Jian [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
关键词
shape memory polymers; polyurethanes; magnetic responsiveness; nanocomposites; IRON-OXIDE NANOPARTICLES; POLYMER NETWORKS; ELECTROMAGNETIC ACTIVATION; FE3O4; NANOPARTICLES; COPOLYMER; PERFORMANCE;
D O I
10.1088/0964-1726/25/5/055036
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a. polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for. nanocomposites with low Fe3O4 loading content. A small. agglomeration was observed for. nanocomposites with 6 wt% and 9 wt% loading content, leading to a small. decline in the. mechanical properties. PLAU and its nanocomposites have glass transition around 52 degrees C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also. exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an. increase in. the loading content of Fe3O4 nanoparticles due to an. improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and. have potential application. in biomedical areas such as intravascular stent.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Characterization of Magnetic Fluorescence Fe3O4/CdSe Nanocomposites
    Du, Guihuan
    Liu, Zuli
    Wang, Dong
    Xia, Xing
    Jia, Lihui
    Yao, Kailun
    Chu, Qian
    Zhang, Suming
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1304 - 1307
  • [32] Properties of nanocomposites of α-Fe and Fe3O4
    Brahma, P
    Banerjee, S
    Das, D
    Mukhopadhyay, PK
    Chatterjee, S
    Nigam, AK
    Chakravorty, D
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 246 (1-2) : 162 - 168
  • [33] Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites
    Park, J. O.
    Rhee, K. Y.
    Park, S. J.
    APPLIED SURFACE SCIENCE, 2010, 256 (23) : 6945 - 6950
  • [34] A dual-induced self-expandable stent based on biodegradable shape memory polyurethane nanocomposites (PCLAU/Fe3O4) triggered around body temperature
    Gu, Shu-Ying
    Chang, Kun
    Jin, Sheng-Peng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (03)
  • [35] Synthesis of magnetic silica-based nanocomposites containing Fe3O4 nanoparticles
    Matsura, V
    Guari, Y
    Larionova, J
    Guérin, C
    Caneschi, A
    Sangregorio, C
    Lancelle-Beltran, E
    Mehdi, A
    Corriu, RJP
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (20) : 3026 - 3033
  • [36] Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites
    Abbas Mohammadi
    Mehdi Barikani
    Mohammad Barmar
    Journal of Materials Science, 2013, 48 : 7493 - 7502
  • [37] Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites
    Mohammadi, Abbas
    Barikani, Mehdi
    Barmar, Mohammad
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (21) : 7493 - 7502
  • [38] Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites
    Minitha, Cherukutty Ramakrishnan
    Arachy, Muthiah Martina Susan
    Kumar, Ramasamy Thangavelu Rajendra
    SEPARATION SCIENCE AND TECHNOLOGY, 2018, 53 (14) : 2159 - 2169
  • [39] Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)
    Bao G.
    Wu C.
    Zhao D.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (01):
  • [40] Preparation and characterisation of magnetic Fe3O4/graphene oxide nanocomposites
    Cao, L. L.
    Yin, S. M.
    Liang, Y. B.
    Zhu, J. M.
    Fang, C.
    Chen, Z. C.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : S364 - S368