On the energy decay rates for the 1D damped fractional Klein-Gordon equation

被引:4
|
作者
Malhi, Satbir [1 ]
Stanislavova, Milena [1 ]
机构
[1] Univ Kansas, Dept Math, 1460 Jayhawk Blvd, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
damped wave equation; fractional derivative; geometric control condition; WAVE-EQUATION; SEMIGROUPS;
D O I
10.1002/mana.201800417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fractional Klein-Gordon equation in one spatial dimension, subjected to a damping coefficient, which is non-trivial and periodic, or more generally strictly positive on a periodic set. We show that the energy of the solution decays at the polynomial rate Ot-s4-2s for 0<s<2 and at some exponential rate when s >= 2. Our approach is based on the asymptotic theory of C-0 semigroups in which one can relate the decay rate of the energy in terms of the resolvent growth of the semigroup generator. The main technical result is a new observability estimate for the fractional Laplacian, which may be of independent interest.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 50 条
  • [21] DAMPED KLEIN-GORDON EQUATION WITH VARIABLE DIFFUSION COEFFICIENT
    Luo, Q. I. N. G. H. U. A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (11) : 3943 - 3958
  • [22] Fractional Klein-Gordon equation with singular mass
    Altybay, Arshyn
    Ruzhansky, Michael
    Sebih, Mohammed Elamine
    Tokmagambetov, Niyaz
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [23] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [24] Fractional Klein-Gordon equation on AdS2+1
    Basteiro, Pablo
    Elfert, Janine
    Erdmenger, Johanna
    Hinrichsen, Haye
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (36)
  • [25] Long time decay for 2D Klein-Gordon equation
    Kopylova, E. A.
    Komech, A. I.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (02) : 477 - 502
  • [26] Solutions to the 1d Klein-Gordon equation with cut-off Coulomb potentials
    Hall, Richard L.
    PHYSICS LETTERS A, 2007, 372 (01) : 12 - 15
  • [27] A new method to solve the damped nonlinear Klein-Gordon equation
    Lin YingZhen
    Cui MingGen
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02): : 304 - 313
  • [28] A new method to solve the damped nonlinear Klein-Gordon equation
    LIN YingZhen CUI MingGen~+ Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2008, (02) : 304 - 313
  • [29] A new method to solve the damped nonlinear Klein-Gordon equation
    YingZhen Lin
    MingGen Cui
    Science in China Series A: Mathematics, 2008, 51 : 304 - 313