We propose a working independent profile likelihood method for the semiparametric time-varying coefficient model with correlation. Kernel likelihood is used to estimate time-varying coefficients. Profile likelihood for the parametric coefficients is formed by plugging in the nonparametric estimator. For independent data, the estimator is asymptotically normal and achieves the asymptotic semiparametric efficiency bound. We evaluate the performance of proposed nonparametric kernel estimator and the profile estimator, and apply the method to the western Kenya parasitemia data.
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
Qi, Xiaomeng
Yu, Zhangsheng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, SJTU Yale Joint Ctr Biostat, Sch Life Sci, Shanghai, Peoples R China
Shanghai Jiao Tong Univ, Clin Res Inst, Sch Med, Shanghai, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
机构:
Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USAUniv N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
Zhou, Qingning
Sun, Yanqing
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USAUniv N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
Sun, Yanqing
Gilbert, Peter B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USA
Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis & Publ Hlth Sci Div, 1124 Columbia St, Seattle, WA 98104 USAUniv N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA