SEMIPARAMETRIC REGRESSION WITH TIME-DEPENDENT COEFFICIENTS FOR FAILURE TIME DATA ANALYSIS

被引:0
|
作者
Yu, Zhangsheng [1 ]
Lin, Xihong [2 ]
机构
[1] Indiana Univ, Sch Med, Div Biostat, Indianapolis, IN 46202 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
Clustered survival data; efficiency; estimating equation; kernel smoothing; marginal model; profile likelihood; sandwich estimator; LOCAL PARTIAL-LIKELIHOOD; ESTIMATING EQUATIONS; HAZARD RATIO; MODEL;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a working independent profile likelihood method for the semiparametric time-varying coefficient model with correlation. Kernel likelihood is used to estimate time-varying coefficients. Profile likelihood for the parametric coefficients is formed by plugging in the nonparametric estimator. For independent data, the estimator is asymptotically normal and achieves the asymptotic semiparametric efficiency bound. We evaluate the performance of proposed nonparametric kernel estimator and the profile estimator, and apply the method to the western Kenya parasitemia data.
引用
收藏
页码:853 / 869
页数:17
相关论文
共 50 条
  • [41] Local linear estimation for time-dependent coefficients in Cox's regression models
    Cai, ZW
    Sun, YQ
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (01) : 93 - 111
  • [42] Kernel regression for cause-specific hazard models with time-dependent coefficients
    Qi, Xiaomeng
    Yu, Zhangsheng
    COMPUTATIONAL STATISTICS, 2023, 38 (01) : 263 - 283
  • [43] Kernel regression for cause-specific hazard models with time-dependent coefficients
    Xiaomeng Qi
    Zhangsheng Yu
    Computational Statistics, 2023, 38 : 263 - 283
  • [44] Regression analysis of longitudinal binary data with time-dependent environmental covariates: bias and efficiency
    Schildcrout, JS
    Heagerty, PJ
    BIOSTATISTICS, 2005, 6 (04) : 633 - 652
  • [45] Using modified approaches on marginal regression analysis of longitudinal data with time-dependent covariates
    Zhou, Yi
    Lefante, John
    Rice, Janet
    Chen, Shande
    STATISTICS IN MEDICINE, 2014, 33 (19) : 3354 - 3364
  • [46] Semiparametric Probit Regression Model with General Interval-Censored Failure Time Data
    Deng, Yi
    Li, Shuwei
    Sun, Liuquan
    Song, Xinyuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (04) : 1413 - 1423
  • [47] Semiparametric smoothing of discrete failure time data
    Patil, Prakash N.
    Bagkavos, Dimitrios
    BIOMETRICAL JOURNAL, 2012, 54 (01) : 5 - 19
  • [48] Semiparametric regression for discrete time-to-event data
    Berger, Moritz
    Schmid, Matthias
    STATISTICAL MODELLING, 2018, 18 (3-4) : 322 - 345
  • [49] METHOD FOR TIME-DEPENDENT FAILURE RATES ANALYSIS.
    Lewis, S.H.
    Schmidt, L.A.
    1600, (15):
  • [50] Semiparametric regression analysis of partly interval-censored failure time data with application to an AIDS clinical trial
    Zhou, Qingning
    Sun, Yanqing
    Gilbert, Peter B.
    STATISTICS IN MEDICINE, 2021, 40 (20) : 4376 - 4394