Decay rates of solutions to dissipative nonlinear evolution equations with ellipticity
被引:28
|
作者:
Zhu, CJ
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
Zhu, CJ
[1
]
Wang, Z
论文数: 0引用数: 0
h-index: 0
机构:Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
Wang, Z
机构:
[1] Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
decay rates;
energy method;
correct function;
a priori estimates;
D O I:
10.1007/s00033-004-3117-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we study the global existence and the asymptotic behavior of the solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects {psi(t) = -(1 - alpha)psi-theta(x) + alphapsi(xx), theta(t) = -(1 - alpha)theta +nupsi(x) + 2psitheta(x) + alphatheta(xx), (E) with initial data (psi,theta)(x, 0) = (psi(0)(x),theta(0)( x)) --> (psi+/-, theta+/-) as x --> +/-infinity, ( I) where alpha and nu are positive constants such that alpha < 1, ν < alpha( 1 - alpha). Through constructing a correct function (θ) over cap (x, t) defined by (2.13) and using the energy method, we show sup(xis an element ofR) (|(psi, theta)(x, t)|+ |(psi(x),theta(x))(x, t)|) --> 0 as t --> infinity and the solutions decay with exponential rates. The same problem is studied by Tang and Zhao [10] for the case of (psi+/-, theta+/-) = (0, 0).
机构:
Univ Paul Verlaine Metz, LMAM, CNRS, UMR 7122, F-57045 Metz 01, France
Univ Paul Verlaine Metz, INRIA Equipe Project CORIDA, F-57045 Metz 01, FranceUniv Paul Verlaine Metz, LMAM, CNRS, UMR 7122, F-57045 Metz 01, France
Alabau-Boussouira, Fatiha
Cannarsa, Piermarco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, ItalyUniv Paul Verlaine Metz, LMAM, CNRS, UMR 7122, F-57045 Metz 01, France