Counting 1-factors in regular bipartite graphs

被引:65
|
作者
Schrijver, A
机构
[1] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
[2] Univ Amsterdam, Dept Math, NL-1018 TV Amsterdam, Netherlands
关键词
D O I
10.1006/jctb.1997.1798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any k-regular bipartite graph with 2n vertices has at least ((k - 1)(k-1)/k(k-2))(n) perfect matchings (1-factors). Equivalently, this is a lower bound on the permanent of any nonnegative integer n x n matrix with each row and column sum equal to k. For any k, the base (k - 1)(k-1)/k(k-2) is largest possible. (C) 1998 Academic Press.
引用
收藏
页码:122 / 135
页数:14
相关论文
共 50 条
  • [31] Unions of 1-factors in r-graphs and overfull graphs
    Jin, Ligang
    Steffen, Eckhard
    [J]. JOURNAL OF COMBINATORICS, 2020, 11 (03) : 457 - 473
  • [32] k-regular factors and semi-k-regular factors in bipartite graphs
    Keiko Kotani
    [J]. Annals of Combinatorics, 1998, 2 (2) : 137 - 144
  • [33] On strong 1-factors and Hamilton weights of cubic graphs
    Zhang, CQ
    [J]. DISCRETE MATHEMATICS, 2001, 230 (1-3) : 143 - 148
  • [34] On the size and structure of graphs with a constant number of 1-factors
    Dudek, Andrzej
    Schmitt, John R.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (10) : 1807 - 1811
  • [35] 1-FACTORS IN POINT DETERMINING GRAPHS - PRELIMINARY REPORT
    SUMNER, DP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (04): : A510 - &
  • [36] Counting Homomorphisms in Bipartite Graphs
    Shams, Shahab
    Ruozzi, Nicholas
    Csikvari, Peter
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1487 - 1491
  • [37] NUMBER OF 1-FACTORS IN 2-CONNECTED GRAPHS
    MADER, W
    [J]. MATHEMATISCHE NACHRICHTEN, 1976, 74 : 217 - 232
  • [38] Regular bipartite graphs with all 2-factors isomorphic
    Aldred, REL
    Funk, M
    Jackson, B
    Labbate, D
    Sheehan, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 92 (01) : 151 - 161
  • [39] ON DRAWING REGULAR BIPARTITE GRAPHS
    MAKINEN, E
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 43 (1-2) : 39 - 43
  • [40] Reflexive bipartite regular graphs
    Koledin, Tamara
    Stanic, Zoran
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 145 - 155