Counting 1-factors in regular bipartite graphs

被引:65
|
作者
Schrijver, A
机构
[1] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
[2] Univ Amsterdam, Dept Math, NL-1018 TV Amsterdam, Netherlands
关键词
D O I
10.1006/jctb.1997.1798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any k-regular bipartite graph with 2n vertices has at least ((k - 1)(k-1)/k(k-2))(n) perfect matchings (1-factors). Equivalently, this is a lower bound on the permanent of any nonnegative integer n x n matrix with each row and column sum equal to k. For any k, the base (k - 1)(k-1)/k(k-2) is largest possible. (C) 1998 Academic Press.
引用
收藏
页码:122 / 135
页数:14
相关论文
共 50 条