Records in set partitions

被引:0
|
作者
Knopfmacher, Arnold [1 ]
Mansour, Toufik [2 ]
Wagner, Stephan [3 ]
机构
[1] Univ Witwatersrand, Dept Math, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Johannesburg, South Africa
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[3] Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A partition of [n] = {1, 2, ... , n} is a decomposition of [n] into nonempty subsets called blocks. We will make use of the canonical representation of a partition as a word over a finite alphabet, known as a restricted growth function. An element a(i) in such a word pi is a strong (weak) record if a(i) > a(j) (a(i) >= a(j)) for all j = 1, 2, ... , i-1. Furthermore, the position of this record is i. We derive generating functions for the total number of strong (weak) records in all words corresponding to partitions of [n], as well as for the sum of the positions of the records. In addition we find the asymptotic mean values and variances for the number, and for the sum of positions, of strong (weak) records in all partitions of [n].
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Extensions of set partitions and permutations
    Caicedo, Jhon B.
    Moll, Victor H.
    Ramirez, Jose L.
    Villamizar, Diego
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02):
  • [22] Partitions with parts in a finite set
    Rodseth, Oystein J.
    Sellers, James A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (03) : 455 - 468
  • [23] WORDS CODING SET PARTITIONS
    Oliver, Kamilla
    Prodinger, Helmut
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (01) : 55 - 59
  • [24] SET PARTITIONS AND INTEGRABLE HIERARCHIES
    Adler, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 187 (03) : 842 - 870
  • [25] SUPERANTICHAINS IN THE LATTICE OF PARTITIONS OF A SET
    SHA, JC
    KLEITMAN, DJ
    STUDIES IN APPLIED MATHEMATICS, 1984, 71 (03) : 207 - 241
  • [26] FRONT REPRESENTATION OF SET PARTITIONS
    Kim, Jang Soo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (01) : 447 - 461
  • [27] On packing densities of set partitions
    Goyt, Adam M.
    Pudwell, Lara K.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 64 : 64 - 76
  • [28] Set partitions as geometric words
    Mansour, Toufik
    Shattuck, Mark
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 31 - 39
  • [29] Three Representations for Set Partitions
    Torres-Jimenez, Jose
    Lara-Alvarez, Carlos
    Cardenas-Castillo, Alfredo
    Blanco-Rocha, Roberto
    Puga-Sanchez, Oscar
    IEEE ACCESS, 2021, 9 : 34604 - 34625
  • [30] Set partitions and integrable hierarchies
    V. E. Adler
    Theoretical and Mathematical Physics, 2016, 187 : 842 - 870