A density result for Sobolev spaces in dimension two, and applications to stability of nonlinear Neumann problems

被引:5
|
作者
Giacomini, Alessandro [1 ]
Trebeschi, Paola [1 ]
机构
[1] Univ Brescia, Fac Ingn, Dipartimento Matemat, I-25133 Brescia, Italy
关键词
Sobolev spaces; capacity; Hausdorff measure; Hausdorff metric; nonlinear elliptic equations; mosco convergence;
D O I
10.1016/j.jde.2007.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if Omega subset of R-2 is bounded and R-2 \ Omega satisfies suitable structural assumptions (for example it has a countable number of connected components), then W-1,W-2 (Omega) is dense in W-1,W-p (Omega) for every 1 <= p < 2. The main application of this density result is the study of stability under boundary variations for nonlinear Neumann problems of the form {-div A(x, del u) + B(x, u) = 0 in Omega, A(x, del u) center dot v = 0 on partial derivative Omega, where A : R-2 x R-2 -> R-2 and B : R-2 x R -> R are Caratheodory functions which satisfy standard monotorricity and growth conditions of order p. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 60
页数:34
相关论文
共 50 条
  • [31] Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces
    Srati, M.
    Azroul, E.
    Benkirane, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [32] MULTIPLICITY OF SOLUTIONS FOR NON-HOMOGENEOUS NEUMANN PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Heidarkhani, Shapour
    Ferrara, Massimiliano
    Caristi, Giuseppe
    Henderson, Johnny
    Salari, Amjad
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [33] An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces
    Benkirane, A.
    El Vally, M. Sidi
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (01) : 57 - 75
  • [34] Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent
    Zineddaine G.
    Sabiry A.
    Melliani S.
    Kassidi A.
    SeMA Journal, 2025, 82 (1) : 45 - 68
  • [35] An existence result of entropy solutions to elliptic problems in generalized Orlicz–Sobolev spaces
    M. Bourahma
    A. Benkirane
    J. Bennouna
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 481 - 504
  • [36] Sobolev spaces on time scales and applications to semilinear Dirichlet problems
    Su, You-Hui
    Yao, Jinghua
    Feng, Zhaosheng
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 12 (03) : 241 - 263
  • [37] On Fractional Musielak-Sobolev Spaces and Applications to Nonlocal Problems
    de Albuquerque, J. C.
    de Assis, L. R. S.
    Carvalho, M. L. M.
    Salort, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [38] Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces
    Shokooh, Saeid
    Graef, John R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 339 - 351
  • [39] On some nonlinear elliptic problems in anisotropic Orlicz-Sobolev spaces
    Elarabi, Rabab
    Lahmi, Badr
    Ouyahya, Hakima
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [40] Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces
    Saeid Shokooh
    John R. Graef
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 339 - 351