A density result for Sobolev spaces in dimension two, and applications to stability of nonlinear Neumann problems

被引:5
|
作者
Giacomini, Alessandro [1 ]
Trebeschi, Paola [1 ]
机构
[1] Univ Brescia, Fac Ingn, Dipartimento Matemat, I-25133 Brescia, Italy
关键词
Sobolev spaces; capacity; Hausdorff measure; Hausdorff metric; nonlinear elliptic equations; mosco convergence;
D O I
10.1016/j.jde.2007.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if Omega subset of R-2 is bounded and R-2 \ Omega satisfies suitable structural assumptions (for example it has a countable number of connected components), then W-1,W-2 (Omega) is dense in W-1,W-p (Omega) for every 1 <= p < 2. The main application of this density result is the study of stability under boundary variations for nonlinear Neumann problems of the form {-div A(x, del u) + B(x, u) = 0 in Omega, A(x, del u) center dot v = 0 on partial derivative Omega, where A : R-2 x R-2 -> R-2 and B : R-2 x R -> R are Caratheodory functions which satisfy standard monotorricity and growth conditions of order p. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 60
页数:34
相关论文
共 50 条
  • [1] A stability result for Neumann problems in dimension N ≥ 3
    Giacomini, A
    JOURNAL OF CONVEX ANALYSIS, 2004, 11 (01) : 41 - 58
  • [2] A density result in Sobolev spaces
    Droniou, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (07): : 697 - 714
  • [3] A stability result for nonlinear Neumann problems under boundary variations
    dal Maso, G
    Ebobisse, F
    Ponsiglione, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (05): : 503 - 532
  • [5] A STABILITY RESULT FOR NONLINEAR NEUMANN PROBLEMS IN REIFENBERG FLAT DOMAINS IN RN
    Lemenant, Antoine
    Milakis, Emmanouil
    PUBLICACIONS MATEMATIQUES, 2011, 55 (02) : 413 - 432
  • [6] PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS INVOLVING ANISOTROPIC SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Ahmed, A.
    Vall, M. S. B. Elemine
    MATEMATICHE, 2022, 77 (02): : 465 - 486
  • [7] Anisotropic Neumann problems in Sobolev spaces with variable exponent
    Boureanu, Maria-Magdalena
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4471 - 4482
  • [8] Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 401 - 406
  • [9] Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces
    Mohamed El Ouaarabi
    Chakir Allalou
    Said Melliani
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1337 - 1350
  • [10] Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1337 - 1350