SINGULAR PERTURBATIONS IN RISK-SENSITIVE STOCHASTIC CONTROL

被引:5
|
作者
Borkar, V. S. [1 ]
Kumar, K. Suresh [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Bombay 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
risk-sensitive control; singular perturbations; two time scales; averaging; Hamilton-Jacobi-Isaacs equation; ERGODIC CONTROL;
D O I
10.1137/090750081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Control of nondegenerate diffusions with infinite horizon risk-sensitive criterion is studied when the dynamics exhibits two distinct time scales. If the time scales are separated by a factor epsilon > 0, then it is shown that under suitable hypotheses, as epsilon down arrow 0, the optimal cost converges to the optimal risk-sensitive cost for a reduced order controlled diffusion. The dynamics of this diffusion corresponds to the dynamics of the slower variables of the original process, with the dependence on the fast variables averaged out as per the asymptotic behavior of the latter. The arguments use a logarithmic transformation to convert the risk-sensitive control problem into a two-person zero-sum ergodic game, followed by the small parameter asymptotics of the associated Hamilton-Jacobi-Isaacs equation.
引用
收藏
页码:3675 / 3697
页数:23
相关论文
共 50 条
  • [1] On the singular risk-sensitive stochastic maximum principle
    Chala, Adel
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (10) : 2846 - 2856
  • [2] Optimal Risk-Sensitive Control for Bilinear Stochastic Systems
    Alcorta G, Ma. Aracelia
    Basin, Michael V.
    Anguiano R, Sonia G.
    [J]. 2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 274 - 278
  • [3] Risk-Sensitive Linear Control for Systems With Stochastic Parameters
    Ito, Yuji
    Fujimoto, Kenji
    Tadokoro, Yukihiro
    Yoshimura, Takayoshi
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1328 - 1343
  • [4] RISK-SENSITIVE PRODUCTION PLANNING OF STOCHASTIC MANUFACTURING SYSTEMS - A SINGULAR PERTURBATION APPROACH
    ZHANG, Q
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (02) : 498 - 527
  • [5] Risk-Sensitive Optimal Control for Stochastic Recurrent Neural Networks
    Liu, Ziqian
    Torres, Raul E.
    Kotinis, Miltiadis
    [J]. 53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1137 - 1140
  • [6] Optimal Risk-sensitive Filtering and Control for Linear Stochastic Systems
    Aracelia Alcorta-Garcia, Ma
    Basin, Michael
    Gpe, Yazmin
    Sanchez, Acosta
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 43 - 48
  • [7] Direct Adaptive Control for Stochastic Systems with Risk-Sensitive Indices *
    Qiao, Nan
    Li, Tao
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 10095 - 10100
  • [8] Risk-sensitive tracking control of stochastic systems with preview action
    Sawada, Yuichi
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (01): : 189 - 198
  • [9] Energy Internet System Control and Optimization: A Stochastic Risk-Sensitive Control Approach
    Qin, Yuchao
    Hua, Haochen
    Cao, Junwei
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 79 - 84
  • [10] The Optimal Control for the Output Feedback Stochastic System at the Risk-Sensitive Cost
    Dai Liyan
    Department of Electrical and Computer Engineering and Computer Science
    [J]. Journal of Systems Engineering and Electronics, 2003, (01) : 74 - 80