Quantum geometry and black hole entropy

被引:793
|
作者
Ashtekar, A
Baez, J
Corichi, A
Krasnov, K
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
关键词
D O I
10.1103/PhysRevLett.80.904
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A "black hole sector" of nonperturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large nonrotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity. an appropriate choice of this parameter gives the Bekenstein-Hawking formula S = A/4l(P)(2). With the same choice of the Immirzi parameter, this result also holds or black holes carrying electric or dilatonic charge, which are not necessarily near extremal. [S0031-9007(97)05183-1].
引用
收藏
页码:904 / 907
页数:4
相关论文
共 50 条
  • [41] Quantum Liouville theory and BTZ black hole entropy
    Chen, YJ
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) : 1153 - 1180
  • [42] Black hole entropy from loop quantum gravity
    Rovelli, C
    PHYSICAL REVIEW LETTERS, 1996, 77 (16) : 3288 - 3291
  • [43] Entropy in the classical and quantum polymer black hole models
    Livine, Etera R.
    Terno, Daniel R.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (22)
  • [44] On the computation of black hole entropy in loop quantum gravity
    Fernando Barbero, J.
    Villasenor, Eduardo J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (03)
  • [45] Quantum entropy of Dirac field in toroidal black hole
    Li GuQiang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (02) : 425 - 429
  • [46] Quantum states and the statistical entropy of the charged black hole
    Vaz, C
    Witten, L
    PHYSICAL REVIEW D, 2001, 63 (02)
  • [47] Quantum entropy bound by information in black hole spacetime
    Hosoya, A
    Carlini, A
    PHYSICAL REVIEW D, 2002, 66 (10):
  • [48] Black hole entropy, log corrections and quantum ergosphere
    Arzano, M
    PHYSICS LETTERS B, 2006, 634 (5-6) : 536 - 540
  • [49] Quantum correction to the entropy of noncommutative BTZ black hole
    Anacleto, M. A.
    Brito, F. A.
    Cavalcanti, A. G.
    Passos, E.
    Spinelly, J.
    GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (02)
  • [50] Quantum corrections to the entropy of a black hole with a global monopole
    Maowang L.
    Jiliang J.
    International Journal of Theoretical Physics, 2000, 39 (5) : 1331 - 1337