Optimal and fast sensor geometry design method for TDOA localisation systems with placement constraints

被引:3
|
作者
Zhang, Tie-Nan [1 ,2 ]
Mao, Xing-Peng [1 ,3 ]
Zhao, Chun-Lei [1 ]
Long, Xiao-Zhuan [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Heilongjiang, Peoples R China
[2] Sci & Technol Elect Informat Control Lab, Chengdu, Sichuan, Peoples R China
[3] Minist Ind & Informat, Key Lab Marine Environm Monitoring & Informat Pro, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1049/iet-spr.2018.5171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sensor geometry design problem of time difference of arrival (TDOA) localisation systems based on Cramer-Rao bound is studied. Sensor placement constraints are considered, which means the available placement area is limited. This makes sensor geometry design a sensor selection problem. In two-dimensional (2D) TDOA localisation or 3D TDOA localisation on the earth surface, sensor selection can be implemented through solving a fractional integer programming problem. However, traditional fractional integer programming methods are either suboptimal or too time consuming. For this reason, a new method named path-varying sphere decoding is proposed in two steps. In step one, the programming problem is relaxed into two sphere decoding (SD) subproblems. Solving these subproblems leads to the optimal solution, and the required computational complexity is much less than those of traditional optimal methods. In step two, the structure of the cost function is explored. This makes it possible to calculate the path-varying upper-bound of a quadratic function. Thus the quadratic function constraint used in one SD subproblem becomes tighter and the calculation speed is enhanced. Theory analyses and simulation results show that the proposed method is not only optimal but also much faster than traditional optimal methods when solving large-scale programming problems.
引用
收藏
页码:708 / 717
页数:10
相关论文
共 50 条
  • [31] Optimal sensor placement methodology for parametric identification of structural systems
    Papadimitriou, C
    JOURNAL OF SOUND AND VIBRATION, 2004, 278 (4-5) : 923 - 947
  • [32] OPTIMAL SENSOR AND ACTUATOR PLACEMENT FOR ACTIVE VIBRATION CONTROL SYSTEMS
    Spaeh, Britta
    Schittenhelm, Rudolf Sebastian
    Rinderknecht, Stephan
    PROCEEDINGS OF THE ASME NOISE CONTROL AND ACOUSTICS DIVISION CONFERENCE (NCAD 2012), 2013, : 343 - 350
  • [33] Sensor Placement for Optimal Control of Infinite-Dimensional Systems
    Hou, Qiqiang
    Clark, Andrew
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2020, 7 (01): : 360 - 371
  • [34] Sensor Placement with Optimal Precision for Temperature Estimation of Battery Systems
    Deshpande, Vedang M.
    Bhattacharya, Raktim
    Subbarao, Kamesh
    IEEE Control Systems Letters, 2022, 6 : 1082 - 1087
  • [35] Optimal design of on-scalp electromagnetic sensor arrays for brain source localisation
    Beltrachini, Leandro
    von Ellenrieder, Nicolas
    Eichardt, Roland
    Haueisen, Jens
    HUMAN BRAIN MAPPING, 2021, 42 (15) : 4869 - 4879
  • [36] METHOD FOR OPTIMAL ACTUATOR AND SENSOR PLACEMENT FOR LARGE FLEXIBLE STRUCTURES
    LIM, KB
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1992, 15 (01) : 49 - 57
  • [37] High energy efficient independent method for optimal sensor placement
    Shi H.
    Sun A.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (11): : 53 - 61
  • [38] Optimal Sensor Placement Method for Gantry Crane SHM System
    Huang Guojian
    Wang Donghui
    Wang Xinhua
    Wang Weiwei
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 697 - +
  • [39] An Efficient Localization Method Based on Adaptive Optimal Sensor Placement
    Lee, Jin-Hee
    Kim, Kyeongyul
    Lee, Sang-Chul
    Shin, Byeong-Seok
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2014,
  • [40] OPTIMAL SENSOR PLACEMENT METHOD FOR THE PURPOSE OF STRUCTURAL HEALTH MONITORING
    Lam, H. F.
    Chow, H. M.
    Yin, T.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON TALL BUILDINGS, 2010, : 183 - 192