Spatio-temporal variability of biophysical parameters of irrigated maize using orbital remote sensing

被引:1
|
作者
Costa, Taiara Souza [1 ]
dos Santos, Robson Argolo [2 ]
Santos, Rosangela Leal [3 ]
Filgueiras, Roberto [4 ]
da Cunha, Fernando Franca [4 ]
Pereira, Anderson de Jesus [5 ]
de Salles, Rodrigo Amaro [6 ]
机构
[1] Univ Fed Vicosa, Grad Program Agr Engn, UFV, Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Grad Program Agr Engn, Vicosa, MG, Brazil
[3] Univ Estadual Feira de Santana, Technol Dept, UEFS, Feira De Santana, BA, Brazil
[4] Univ Fed Vicosa, Dept Agron Engn, Vicosa, MG, Brazil
[5] Univ Estadual Paulista, UNESP, Sao Paulo, SP, Brazil
[6] Univ Fed Vicosa, Vicosa, MG, Brazil
来源
SEMINA-CIENCIAS AGRARIAS | 2021年 / 42卷 / 04期
关键词
Agrometeorological models; Irrigation management; Phenological cycle; WATER PRODUCTIVITY; RIVER-BASIN; VEGETATION; IMAGES; YIELD;
D O I
10.5433/1679-0359.2021v42n4p2181
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study proposes to estimate the actual crop evapotranspiration, using the SAFER model, as well as calculate the crop coefficient (Kc) as a function of the normalized difference vegetation index (NDVI) and determine the biomass of an irrigated maize crop using images from the Operational Land Imager (OLI) and Thermal Infrared (TIRS) sensors of the Landsat-8 satellite. Pivots 21 to 26 of a commercial farm located in the municipalities of Bom Jesus da Lapa and Serra do Ramalho, west of Bahia State, Brazil, were selected. Sowing dates for each pivot were arranged as North and South or East and West, with cultivation starting firstly in one of the orientations and subsequently in the other. The relationship between NDVI and the Kc values obtained in the FAO-56 report (Kc(FAO)) revealed a high coefficient of determination (R-2 = 0.7921), showing that the variance of Kc(FAO) can be explained by NDVI in the maize crop. Considering the center pivots with different planting dates, the crop evapotranspiration (ETc) pixel values ranged from 0.0 to 6.0 mm d(-1) during the phenological cycle. The highest values were found at 199 days of the year (DOY), corresponding to around 100 days after sowing (DAS). The lowest BIO values occur at 135 DOY, at around 20 DAS. There is a relationship between ETc and BIO, where the DOY with the highest BIO are equivalent to the days with the highest ETc values. In addition to this relationship, BIO is strongly influenced by soil water availability.
引用
收藏
页码:2181 / 2201
页数:21
相关论文
共 50 条
  • [41] USING 3D RESIDUAL NETWORK FOR SPATIO-TEMPORAL ANALYSIS OF REMOTE SENSING DATA
    Bhimra, Muhammad Ahmed
    Nazir, Usman
    Taj, Murtaza
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1403 - 1407
  • [42] Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data
    Padua, Luis
    Duarte, Lia
    Antao-Geraldes, Ana M.
    Sousa, Joaquim J.
    Castro, Joao Paulo
    [J]. PLANTS-BASEL, 2022, 11 (24):
  • [43] BIOPHYSICAL PARAMETERS TO THE SURFACE BY ORBITAL REMOTE SENSING IN HYDROGRAPHIC BASIN OF THE BRAZILIAN SEMIARID
    Costa Lins, Frederico Abraao
    de Albuquerque Moura, Geber Barbosa
    Oliveira Lopes, Pabricio Marcos
    Bezerra da Silva, Jhon Lennon
    Nascimento, Cristina Rodrigues
    de Franca e Silva, Enio Farias
    [J]. GEO UERJ, 2021, (39):
  • [44] Detection of Geothermal Anomaly Areas With Spatio-Temporal Analysis Using Multitemporal Remote Sensing Data
    Liu, Shanwei
    Ye, Chuanlong
    Sun, Qinting
    Xu, Mingming
    Duan, Zhongfeng
    Sheng, Hui
    Wan, Jianhua
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4866 - 4878
  • [45] Toward Determining the Spatio-Temporal Variability of Upper-Ocean Ecosystem Stoichiometry From Satellite Remote Sensing
    Tanioka, Tatsuro
    Fichot, Cedric G.
    Matsumoto, Katsumi
    [J]. FRONTIERS IN MARINE SCIENCE, 2020, 7
  • [46] Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing
    Liu, Meiling
    Liu, Xiangnan
    Zhang, Biyao
    Ding, Chao
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 51 : 91 - 102
  • [47] Remote sensing-based spatio-temporal rainfall variability analysis: the case of Addis Ababa City, Ethiopia
    Mekonnen, Esubalew Nebebe
    Gebremariam, Ephrem
    Fetene, Aramde
    Damene, Shimeles
    [J]. APPLIED GEOMATICS, 2024, 16 (02) : 365 - 385
  • [48] SPATIO-TEMPORAL VARIATION OF SOIL MOISTURE AND DROUGHT MONITORING USING PASSIVE MICROWAVE REMOTE SENSING
    Thiruvengadam, P.
    Rao, Y. S.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3126 - 3129
  • [49] Spatio-temporal interpolation of Sea Surface Temperature using high resolution remote sensing data
    Lguensat, Redouane
    Tandeo, Pierre
    Fablet, Ronan
    Garello, Rene
    [J]. 2014 OCEANS - ST. JOHN'S, 2014,
  • [50] Spatio-Temporal Dynamics of Rangeland Transformation using machine learning algorithms and Remote Sensing data
    Wang, Ningde
    Naz, Iram
    Aslam, Rana Waqar
    Quddoos, Abdul
    Soufan, Walid
    Raza, Danish
    Ishaq, Tibra
    Ahmed, Bilal
    [J]. RANGELAND ECOLOGY & MANAGEMENT, 2024, 94 : 106 - 118