Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors

被引:38
|
作者
Hrozhyk, Uladzimir A. [1 ]
Serak, Svetlana V. [1 ]
Tabiryan, Nelson V. [1 ]
White, Timothy J. [2 ]
Bunning, Timothy J. [2 ]
机构
[1] Beam Engn Adv Measurements Co, Winter Pk, FL USA
[2] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 09期
关键词
AZOBENZENE; COLOR; TRANSMISSION;
D O I
10.1364/OE.18.009651
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Reversible, fast, all-optical switching of the reflection of a cholesteric liquid crystal (CLC) is demonstrated in a formulation doped with push-pull azobenzene dyes. The reflection of the photosensitive CLC compositions is optically switched by exposure to 488 and 532 nm CW lasers as well as ns pulsed 532 nm irradiation. Laser-directed optical switching of the reflection of the CLC compositions occurs rapidly, within a few hundred milliseconds for the CW laser lines examined here. Also observed is optical switching on the order of tens of nanoseconds when the CLC is exposed to a single nanosecond pulse with 0.2 J/cm(2) energy density. The rapid cis-trans isomerization typical of push-pull azobenzene dye is used for the first time to rapidly restore the reflection of the CLC from a photoinduced isotropic state within seconds after cessation of light exposure. (C) 2010 Optical Society of America
引用
收藏
页码:9651 / 9657
页数:7
相关论文
共 50 条
  • [21] Reflection and transmission of light by cholesteric liquid crystal-glass-cholesteric liquid crystal and cholesteric liquid crystal(1)-cholesteric crystal(2) systems
    A. A. Gevorgyan
    K. V. Papoyan
    O. V. Pikichyan
    Optics and Spectroscopy, 2000, 88 : 586 - 593
  • [22] Smart window using a thermally and optically switchable liquid crystal cell
    Oh, Seung-Won
    Kim, Sang-Hyeok
    Baek, Jong-Min
    Yoon, Tae-Hoon
    EMERGING LIQUID CRYSTAL TECHNOLOGIES XIII, 2018, 10555
  • [23] Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant
    Lin, Jia-De
    Hsieh, Meng-Hung
    Wei, Guan-Jhong
    Mo, Ting-Shan
    Huang, Shuan-Yu
    Lee, Chia-Rong
    OPTICS EXPRESS, 2013, 21 (13): : 15765 - 15776
  • [24] Switchable flat optical elements with patterned cholesteric liquid crystal for augmented reality displays
    Li, Yannanqi
    Semmen, John
    Wu, Shin-Tson
    OPTICAL ARCHITECTURES FOR DISPLAYS AND SENSING IN AUGMENTED, VIRTUAL, AND MIXED REALITY, AR, VR, MR IV, 2023, 12449
  • [25] Flexible free- standing cholesteric liquid crystal films for multi- color reflectors
    Yan Jing
    Fan Xiang-wen
    Qu Ke
    Yu Ying
    Li Ruo-zhou
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (10) : 1330 - 1337
  • [26] Optically Reconfigurable Reflective/Scattering States Enabled with Photosensitive Cholesteric Liquid Crystal Cells
    Vernon, Jonathan P.
    Hrozhyk, Uladzimir A.
    Serak, Svetlana V.
    Tondiglia, Vincent P.
    White, Timothy J.
    Tabiryan, Nelson V.
    Bunning, Timothy J.
    ADVANCED OPTICAL MATERIALS, 2013, 1 (01): : 84 - 91
  • [27] Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals
    Cheng, Ko-Ting
    Liu, Cheng-Kai
    Ting, Chi-Lun
    Fuh, Andy Ying-Guey
    OPTICS EXPRESS, 2007, 15 (21): : 14078 - 14085
  • [28] Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter
    Kumar, Rishi
    Raina, K. K.
    LIQUID CRYSTALS, 2014, 41 (02) : 228 - 233
  • [29] Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate
    Khandelwal, Hitesh
    van Heeswijk, Ellen P. A.
    Schenning, Albert P. H. J.
    Debije, Michael G.
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (24) : 7395 - 7398
  • [30] Bioinspired, Cholesteric Liquid-Crystal Reflectors with Time-Controlled Coexisting Chiral and Achiral Structures
    Boyon, Cecilia
    Soldan, Vanessa
    Mitov, Michel
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (25) : 30118 - 30126