The Research on Optimal Tropospheric Combined Model Based on Multi-GNSS PPP

被引:0
|
作者
Jiao, Guoqiang [1 ,2 ]
Song, Shuli [1 ]
Su, Ke [1 ,2 ]
Zhou, Weili [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划;
关键词
iGMAS; GPT2; ECMWF; NWM; Precise point positioning; Positioning accuracy; ZTD; GPS;
D O I
10.1007/978-981-13-7759-4_11
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper combines ten tropospheric combined empirical models based on the atmospheric element prediction model of GPT/GPT2, the Saastamoinen and the Modified Hopfield model and the mapping function of VMF1/GMF/NMF, and combines two tropospheric combined numerical weather prediction models based on the pressure-level data of ECMWF. This paper focuses on the impact of different tropospheric models on the positioning and zenith tropospheric delay (ZTD) accuracy of multi-GNSS precise point positioning (PPP) based on International GNSS Monitoring and Assessment System (iGMAS) products. The results show that the accuracy of GPT2 +Saastamoinen is 12.69% higher than UNB3M and the accuracy of Numerical Weather Model (NWM) is 63.80% higher than UNB3M based on the data of IGS ZTD. In terms of PPP positioning accuracy, the accuracy of GPT2+VMF1 +Modified Hopfield is 5.30% higher than UNB3M and the accuracy of NWM (GMF) is 8.77% higher than UNB3M. This paper gives a reference for the best empirical models of GPT2+VMF1+Modified Hopfield and the best numerical weather prediction model of NWM (GMF) and provides a more accurate tropospheric model for standard point positioning (SPP), PPP, and medium and long baseline positioning.
引用
下载
收藏
页码:117 / 130
页数:14
相关论文
共 50 条
  • [21] LEO constellation-augmented multi-GNSS for rapid PPP convergence
    Li, Xingxing
    Ma, Fujian
    Li, Xin
    Lv, Hongbo
    Bian, Lang
    Jiang, Zihao
    Zhang, Xiaohong
    JOURNAL OF GEODESY, 2019, 93 (05) : 749 - 764
  • [22] Assessing the Performance of Multi-GNSS PPP-RTK in the Local Area
    Ma, Hongyang
    Zhao, Qile
    Verhagen, Sandra
    Psychas, Dimitrios
    Liu, Xianglin
    REMOTE SENSING, 2020, 12 (20) : 1 - 19
  • [23] magicGNSS' Real-Time POD and PPP multi-GNSS Service
    Tobas, Guillermo
    David Calle, J.
    Navarro, Pedro
    Rodriguez, Irma
    Rodriguez, Daniel
    PROCEEDINGS OF THE 27TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2014), 2014, : 1046 - 1055
  • [24] Empirical Stochastic Model of Multi-GNSS Measurements
    Prochniewicz, Dominik
    Wezka, Kinga
    Kozuchowska, Joanna
    SENSORS, 2021, 21 (13)
  • [25] Assessing the latest performance of Galileo-only PPP and the contribution of Galileo to Multi-GNSS PPP
    Xia, Fengyu
    Ye, Shirong
    Xia, Pengfei
    Zhao, Lewen
    Jiang, Nana
    Chen, Dezhong
    Hu, Guangbao
    ADVANCES IN SPACE RESEARCH, 2019, 63 (09) : 2784 - 2795
  • [26] Multi-GNSS PPP and PPP-RTK: Some GPS plus BDS Results in Australia
    Odijk, Dennis
    Zhang, Baocheng
    Teunissen, Peter J. G.
    China Satellite Navigation Conference (CSNC) 2015 Proceedings, VolII, 2015, 341 : 613 - 623
  • [27] Research on multi-GNSS precise point positioning (MSMFPPP)
    Zang, Nan
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (11):
  • [28] Multi-GNSS time transfer based on the CGGTTS
    Verhasselt, Katrijn
    Defraigne, Pascale
    METROLOGIA, 2019, 56 (06)
  • [29] Do we need ambiguity resolution in multi-GNSS PPP for accuracy or integrity?
    Seepersad, G.
    Aggrey, J.
    Bisnath, S.
    PROCEEDINGS OF THE 30TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2017), 2017, : 2204 - 2218
  • [30] Comparative analysis of MGEX products for post-processing multi-GNSS PPP
    Bahadur, Berkay
    Nohutcu, Metin
    MEASUREMENT, 2019, 145 : 361 - 369