Efficient hardware for modular exponentiation using the sliding-window method

被引:0
|
作者
Nedjah, Nadia [1 ]
Mourelle, Luiza de Macedo [2 ]
da Silva, Rodrigo Martins [2 ]
机构
[1] Univ Estado Rio De Janeiro, Dept Elect & Telecommun Engn, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Dept Syst Engn & Computat, Rio De Janeiro, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modular exponentiation is an essential operations for various applications, such as cryptography. The performance of this operations has a tremendous impact on the efficiency of the whole application. Therefore, many researchers devoted special interest to providing smart methods and efficient implementation for modular exponentaition. One these methods is the sliding-window method, which pre-processes the exponent into zero and non-zero partitions so that the number of modular multiplications required to compute the modular power is reduced. In this paper, we devise a novel harwdare for computing modular exponentiation using the sliding-window method. The implementation is efficient when compared against existing hardware implementations of the modular exponentiation.
引用
收藏
页码:17 / +
页数:3
相关论文
共 50 条
  • [41] Computing Diameter in the Streaming and Sliding-Window Models
    Joan Feigenbaum
    Sampath Kannan
    Jian Zhang
    Algorithmica , 2005, 41 : 25 - 41
  • [42] Sliding-Window Superposition Coding for Interference Networks
    Wang, Lele
    Sasoglu, Eren
    Kim, Young-Han
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2749 - 2753
  • [43] Consistency Analysis for Sliding-Window Visual Odometry
    Dong-Si, Tue-Cuong
    Mourikis, Anastasios I.
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 5202 - 5209
  • [44] Computing diameter in the streaming and sliding-window models
    Feigenbaum, J
    Kannan, S
    Zhang, J
    ALGORITHMICA, 2005, 41 (01) : 25 - 41
  • [45] Identifying Buffet Oscillations Using Sliding-Window Dynamic Mode Decomposition
    Dias, Sathsara
    Budisic, Marko
    Piperni, Pat
    Helenbrook, Brian T.
    AIAA JOURNAL, 2024, 62 (08) : 3039 - 3051
  • [46] Low-latency Sliding-window Recoding
    Tasdemir, Elif
    Tomoskozi, Mate
    Salah, Hani
    Fitzek, Frank H. P.
    2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
  • [47] A Sliding-Window Framework for Representative Subset Selection
    Wang, Yanhao
    Li, Yuchen
    Tan, Kian-Lee
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1268 - 1271
  • [48] Maintaining Wavelet Synopses for Sliding-Window Aggregates
    Mytilinis, Ioannis
    Tsoumakos, Dimitrios
    Koziris, Nectarios
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2019), 2019, : 73 - 84
  • [49] Sliding-window weighted linkage disequilibrium test
    Yang, Hsin-Chou
    Lin, Chin-Yu
    Fann, Cathy S. J.
    GENETIC EPIDEMIOLOGY, 2006, 30 (06) : 531 - 545
  • [50] Sketching distributed sliding-window data streams
    Odysseas Papapetrou
    Minos Garofalakis
    Antonios Deligiannakis
    The VLDB Journal, 2015, 24 : 345 - 368