Information-driven receptor placement for contaminant source determination

被引:36
|
作者
Keats, A. [1 ]
Yee, E. [2 ]
Lien, F. -S. [1 ]
机构
[1] Univ Waterloo, Dept Mech Engn, Waterloo, ON N2L 3G1, Canada
[2] Def R&D Canada Suffield, Medicine Hat, AB T1A 8K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bayesian experimental design; Source determination; Optimal detector location; Dispersion modelling; Scalar fluxes; Inverse problem; Expected information; BAYESIAN EXPERIMENTAL-DESIGN; ENTROPY; RECONSTRUCTION; INFERENCE; OPTIMIZATION; NETWORK; MODELS;
D O I
10.1016/j.envsoft.2010.01.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Isolating the source of an unknown contaminant emission is a challenging problem when provided with only a limited and noisy set of mean concentration measurements. A Bayesian approach to this inverse problem yields estimates for the source parameters (location and strength) which depend directly on the quality of the information obtained from an array of detectors. If the data are of poor quality, uncertainties associated with the source parameter estimates may be large, necessitating further exploration (e.g., using mobile detection) in order to better isolate the putative source. We employ Bayesian experimental design with the goal of strategically placing an additional detector in order to maximize the 'expected information' contained in subsequent posterior distributions for the source parameters. The methodology is demonstrated using synthetic data from detectors lying in a horizontally homogeneous, neutrally-stratified atmospheric surface layer. Markov chain Monte Carlo and a posterior sampling technique are used to calculate the expected information over a grid of potential detector locations, and an auxiliary detector measuring both mean concentration and turbulent scalar fluxes is added where the expected information reaches a maximum. The updated posterior distribution (calculated based on the additional measurements) yields significantly improved estimates for the source location and strength. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1000 / 1013
页数:14
相关论文
共 50 条
  • [1] Information-Driven Active Audio-Visual Source Localization
    Schult, Niclas
    Reineking, Thomas
    Kluss, Thorsten
    Zetzsche, Christoph
    [J]. PLOS ONE, 2015, 10 (09):
  • [2] THE INFORMATION-DRIVEN COMMUNITY
    SMITH, I
    HARTSHORN, A
    [J]. BRITISH JOURNAL OF HEALTHCARE COMPUTING & INFORMATION MANAGEMENT, 1994, 11 (03): : 22 - 23
  • [3] Cooperative information-driven source search and estimation for multiple agents
    Park, Minkyu
    Oh, Hyondong
    [J]. INFORMATION FUSION, 2020, 54 : 72 - 84
  • [4] Information-Driven Path Planning
    Shi Bai
    Tixiao Shan
    Fanfei Chen
    Lantao Liu
    Brendan Englot
    [J]. Current Robotics Reports, 2021, 2 (2): : 177 - 188
  • [5] Information-Driven Collective Intelligences
    Fontana, Francesca Arcelli
    Formato, Ferrante
    Pareschi, Remo
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT II, 2010, 6422 : 352 - +
  • [6] Information-driven optimal placement strategy for target localization in ocean sensor networks
    Mei, Xiaojun
    Wu, Huafeng
    Xian, Jiangfeng
    Ma, Teng
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (11): : 23 - 29
  • [7] LightDock goes information-driven
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    Jimenez-Garcia, Brian
    [J]. BIOINFORMATICS, 2020, 36 (03) : 950 - 952
  • [8] An information-driven approach to pharmacogenomics
    Vyas, H
    Summers, R
    [J]. PHARMACOGENOMICS, 2005, 6 (05) : 473 - 480
  • [9] A Calculus for Information-Driven Networks
    Wu, Kui
    Jiang, Yuming
    Hu, Guoqiang
    [J]. IWQOS: 2009 IEEE 17TH INTERNATIONAL WORKSHOP ON QUALITY OF SERVICE, 2009, : 46 - +
  • [10] A Framework for Information-driven Manufacturing
    Friedemann, Marko
    Trapp, Thies Uwe
    Stoldt, Johannes
    Langer, Tino
    Putz, Matthias
    [J]. FACTORIES OF THE FUTURE IN THE DIGITAL ENVIRONMENT, 2016, 57 : 38 - 43