Community Detection in Social Network with Pairwisely Constrained Symmetric Non-Negative Matrix Factorization

被引:46
|
作者
Shi, Xiaohua [1 ,2 ]
Lu, Hongtao [1 ]
He, Yangchen [1 ]
He, Shan [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, MOE Microsoft Lab Intelligent Comp & Intelligent, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China
[3] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
关键词
Community Detection; Non-negative Matrix Factorization; Symmetric Matrix; Semi-supervised Learning; Pairwise Constraints; COMPLEX NETWORKS;
D O I
10.1145/2808797.2809383
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-negative Matrix Factorization (NMF) aims to find two non-negative matrices whose product approximates the original matrix well, and is widely used in clustering condition with good physical interpretability and universal applicability. Detecting communities with NMF can keep non-negative network physical definition and effectively capture communities-based structure in the low dimensional data space. However some NMF methods in community detection did not concern with more network inner structures or existing ground-truth community information. In this paper, we propose a novel pairwisely constrained non-negative symmetric matrix factorization (PCSNMF) method, which not only consider symmetric community structures of undirected network, but also takes into consideration the pairwise constraints generated from some ground-truth group information to enhance the community detection. We compare our approaches with other NMF-based methods in three social networks, and experimental results for community detection show that our approaches are all feasible and achieve better community detection results.
引用
收藏
页码:541 / 546
页数:6
相关论文
共 50 条
  • [41] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [42] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [43] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [44] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [45] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [46] Algorithms for non-negative matrix factorization
    Lee, DD
    Seung, HS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 556 - 562
  • [47] AN APPROACH TO DOUBLETALK DETECTION BASED ON NON-NEGATIVE MATRIX FACTORIZATION
    Cahill, Niall
    Lawlor, Robert
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 497 - 501
  • [48] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [49] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [50] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806