Late Parallelization and Feedback Approaches for Distributed Computation of Evolutionary Multiobjective Optimization Algorithms

被引:2
|
作者
Altinoz, O. Tolga [1 ]
Deb, Kalyanmoy [2 ]
机构
[1] Ankara Univ, Dept Elect & Elect Engn, TR-06830 Ankara, Turkey
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48864 USA
关键词
reference point-based NSGA-II; parallelization; distributing computing;
D O I
10.1109/ISCMI.2015.34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distributing of the multiobjective optimization algorithm into various devices in a parallel fashion is a method for speeding up the computation time of the multiobjective evolutionary algorithms (MOEAs). When the processors are increased in number, the gain from parallelization decreases. Therefore, the aim of the parallelization method is not only to decrease the overall algorithm execution time, but also to obtain a higher gain from the use of parallel processors. Therefore, in this study two new parallelization approaches are proposed and discussed, which are named as late parallelization (no-migration approach) and feedback approaches. The performances of these approaches are evaluated on convex and concave multi-objective test problems.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 50 条
  • [1] Late parallelization and feedback approaches for distributed computation of evolutionary multi-objective optimization algorithms
    Altinoz, O. Tolga
    Deb, Kalyanmoy
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 30 (03): : 723 - 733
  • [2] Late parallelization and feedback approaches for distributed computation of evolutionary multi-objective optimization algorithms
    O. Tolga Altinoz
    Kalyanmoy Deb
    [J]. Neural Computing and Applications, 2018, 30 : 723 - 733
  • [3] A hierarchical approach in distributed evolutionary algorithms for multiobjective optimization
    Zaharie, Daniela
    Petcu, Dana
    Panica, Silviu
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 516 - 523
  • [4] An Overview of Evolutionary Algorithms in Multiobjective Optimization
    Fonseca, Carlos M.
    Fleming, Peter J.
    [J]. EVOLUTIONARY COMPUTATION, 1995, 3 (01) : 1 - 16
  • [5] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [6] A survey of decomposition approaches in multiobjective evolutionary algorithms
    Wang, Jia
    Su, Yuchao
    Lin, Qiuzhen
    Ma, Lijia
    Gong, Dunwei
    Li, Jianqiang
    Ming, Zhong
    [J]. NEUROCOMPUTING, 2020, 408 (408) : 308 - 330
  • [7] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [8] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    [J]. Journal of Heuristics, 2000, 6 : 347 - 360
  • [9] Multiobjective Evolutionary Algorithms for Intradomain Routing Optimization
    Rocha, Miguel
    Sa, Tiago
    Sousa, Pedro
    Cortez, Paulo
    Rio, Miguel
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2272 - 2279
  • [10] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    [J]. JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360