LIE AND JORDAN PRODUCTS IN INTERCHANGE ALGEBRAS

被引:1
|
作者
Bremner, Murray [1 ]
Madariaga, Sara [1 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, 106 Wiggins Rd McLean Hall,Room 142, Saskatoon, SK S7N 5E6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Computer algebra; Interchange algebras; Polarization of operations; Polynomial identities; Representation theory of the symmetric group; POLYNOMIAL-IDENTITIES; CATEGORIES;
D O I
10.1080/00927872.2015.1085545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Lie brackets and Jordan products derived from associative operationso, center dot satisfying the interchange identity (w center dot x)o(y center dot z)(w o y)center dot(x o z). We use computational linear algebra, based on the representation theory of the symmetric group, to determine all polynomial identities of degree 7 relating (i) the two Lie brackets, (ii) one Lie bracket and one Jordan product, and (iii) the two Jordan products. For the Lie-Lie case, there are two new identities in degree 6 and another two in degree 7. For the Lie-Jordan case, there are no new identities in degree 6 and a complex set of new identities in degree 7. For the Jordan-Jordan case, there is one new identity in degree 4, two in degree 5, and complex sets of new identities in degrees 6 and 7.
引用
收藏
页码:3485 / 3508
页数:24
相关论文
共 50 条
  • [31] NONCOMMUTATIVE MATRIX JORDAN ALGEBRAS FROM LIE-ALGEBRAS
    HOPKINS, NC
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (03) : 767 - 775
  • [32] Lie (Jordan) derivations of arbitrary triangular algebras
    Yu Wang
    Aequationes mathematicae, 2019, 93 : 1221 - 1229
  • [33] Jordan Derivations and Lie Derivations on Path Algebras
    Y. Li
    F. Wei
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 79 - 92
  • [34] CATEGORIES OF JORDAN STRUCTURES AND GRADED LIE ALGEBRAS
    Caveny, D. M.
    Smirnov, O. N.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (01) : 186 - 202
  • [35] Lie, Jordan and proper codimensions of associative algebras
    Giambruno A.
    Zaicev M.
    Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) : 161 - 171
  • [36] Lie (Jordan) derivations of arbitrary triangular algebras
    Wang, Yu
    AEQUATIONES MATHEMATICAE, 2019, 93 (06) : 1221 - 1229
  • [37] JORDAN GRADINGS ON EXCEPTIONAL SIMPLE LIE ALGEBRAS
    Elduque, Alberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4007 - 4017
  • [38] Jordan-Chevalley Decomposition in Lie Algebras
    Cagliero, Leandro
    Szechtman, Fernando
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (02): : 349 - 354
  • [39] Reduction of Lie-Jordan algebras: Classical
    Falceto, F.
    Ferro, L.
    Ibort, A.
    Marmo, G.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2013, 36 (03):
  • [40] Prime Quotients of Jordan Systems and Lie Algebras
    Anquela, Jose A.
    Cortes, Teresa
    Garcia, Esther
    Gomez Lozano, Miguel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 29 - 52