Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries

被引:73
|
作者
Zeng, Zhipeng [1 ]
Zhao, Hailei [1 ,2 ]
Lv, Pengpeng [1 ]
Zhang, Zijia [1 ]
Wang, Jie [1 ]
Xia, Qing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
Gel-like film; Hollow nanotubes; Iron oxides; Electrochemical properties; Lithium ion batteries; FE3O4; NANOPARTICLES; SCALE SYNTHESIS; CARBON MATRIX; GRAPHENE; PERFORMANCE; OXIDE; COMPOSITE; CAPACITY; HYBRID; FOAM;
D O I
10.1016/j.jpowsour.2014.10.181
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A composited anode material with combined Fe3O4/FeO nanotube and carbon shell is synthesized by a facile hydrothermal method with subsequent CVD heat treatment. The as-prepared Fe3O4/FeO/C composite shows excellent cycle stability and rate capability as lithium ion battery anode. We study the effect of FeO on the electrochemical performances of the Fe3O4/FeO/C electrode. A capacity climbing phenomenon can be observed for the Fe3O4/FeO/C electrodes, which tends to be more evident with increasing FeO content. The "extra capacity" is correlated with the reversible formation of polymeric gel-like film on the particle surface of active materials, which is electrochemical active towards Li ions. The FeO component presents a certain extent of catalytic role in assisting the formation of the gel-like film. Transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) analytical technique are combined to further confirm the reversible growth of the SEI gel-like film. High temperature promotes the formation of gel-like film, while the resistance from the film decreases remarkably with temperature due to the enhanced lithium ion conductivity. The film contributes little to the whole EIS resistance of Fe3O4/FeO nanotube/carbon electrode. Tentative explanations based on the current experiments and existing literature are made to explain such unusual finding. (C) 2014 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1091 / 1099
页数:9
相关论文
共 50 条
  • [31] Electrochemical properties of the carbon-coated lithium vanadium oxide anode for lithium ion batteries
    Lee, SangMin
    Kim, Hyung Sun
    Seong, Tae-Yeon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (06) : 3136 - 3140
  • [32] Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries
    Yufei Zhang
    Huanwen Wang
    Jun Yang
    Haosen Fan
    Yu Zhang
    Zhengfei Dai
    Yun Zheng
    Wei Huang
    Xiaochen Dong
    Qingyu Yan
    Nano Research, 2017, 10 : 4266 - 4273
  • [33] Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries
    Shu, J
    Li, H
    Yang, RZ
    Shi, Y
    Huang, XJ
    ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (01) : 51 - 54
  • [34] TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries
    Wang Qian-Wen
    Du Xian-Feng
    Chen Xi-Zi
    Xu You-Long
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (08) : 1437 - 1451
  • [35] Lithium Storage in Carbon-coated Zinc Iron Oxides as Anode Materials for Lithium-Ion Batteries
    Wang, Huan-Huan
    Jin, Bo
    Li, Lin-Lin
    Lang, Xing-You
    Yang, Chun-Cheng
    Gao, Wang
    Zhu, Yong-Fu
    Wen, Zi
    Jiang, Qing
    ENERGY TECHNOLOGY, 2017, 5 (04) : 611 - 615
  • [36] Synthesis and electrochemical properties of nickel sulfide/carbon composite as anode material for lithium-ion and sodium-ion batteries
    Lee, Yeon-Ju
    Reddy, B. S.
    Hong, Hyeon-A
    Kim, Ki-Won
    Cho, Seong-Jin
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    Cho, Kwon-Koo
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16883 - 16895
  • [37] Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries
    Yan, Jiayan
    Song, Huaihe
    Yang, Shubin
    Yan, Jingdan
    Chen, Xiaohong
    ELECTROCHIMICA ACTA, 2008, 53 (22) : 6351 - 6355
  • [38] Carbon Allotropes as Anode Material for Lithium-Ion Batteries
    Rajkamal, A.
    Thapa, Ranjit
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10):
  • [39] Influence of Carbon Nanotubes on the Electrochemical Properties of Lithium-Ion Battery Anode Materials
    Wu, Yu-Shiang
    Hu, Kai-Ling
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES AND ENGINEERING SYSTEMS (ICITES2013), 2014, 293 : 391 - 398
  • [40] Effect of carbon coating on the electrochemical performance of graphite as an anode material for lithium-ion batteries
    Wang, HY
    Yoshio, M
    Fukuda, K
    Adachi, Y
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 55 - 72