Fuzzy multiquadric radial basis functions for solving fuzzy partial differential equations

被引:4
|
作者
Dirbaz, M. [1 ]
Allahviranloo, T. [1 ,2 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2019年 / 38卷 / 04期
关键词
Fuzzy multi quadric radial basic functions; Fuzzy interpolation; Fuzzy modified Euler's method; Fuzzy partial differential equation; APPROXIMATIONS;
D O I
10.1007/s40314-019-0942-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we define the fuzzy multiquadric radial basis functions (FMQRBF). In the following, using the (FMQRBF) as the basis functions on the fuzzy interpolation expansion, we introduce the fuzzy multiquadric radial basis functions interpolation. Moreover, by considering (FMQRBF) and our obtained fuzzy method based on generalized Hukuhara difference (modified Euler's) (Dirbaz and Allahviranloo in Fuzzy Sets Syst 2016:1-24, 2016), we present an algorithm of the fuzzy meshless method of lines for solving fuzzy partial differential equations. Finally, by the proposed fuzzy method we solve some numerical examples and analyze the errors in details.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Differential calculus of fuzzy multi-variable functions and its applications to fuzzy partial differential equations
    Alikhani, R.
    Bahrami, F.
    Parvizi, S.
    FUZZY SETS AND SYSTEMS, 2019, 375 : 100 - 120
  • [32] The role of the multiquadric shape parameters in solving elliptic partial differential equations
    Wertz, J.
    Kansa, E. J.
    Ling, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (08) : 1335 - 1348
  • [33] Solving differential equations with fuzzy parameters
    Flores-Franulic, A.
    Chalco-Cano, Y.
    Roman-Flores, H.
    2008 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2, 2008, : 497 - 500
  • [34] Solving Riccati Fuzzy Differential Equations
    Karimi, F.
    Allahviranloo, T.
    Pishbin, S. M.
    Abbasbandy, S.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2021, 17 (01) : 29 - 43
  • [35] Fuzzy neural network for solving a system of fuzzy differential equations
    Mosleh, Maryam
    APPLIED SOFT COMPUTING, 2013, 13 (08) : 3597 - 3607
  • [36] A Study of Fuzzy Methods for Solving System of Fuzzy Differential Equations
    Keshavarz, M.
    Allahviranloo, T.
    Abbasbandy, S.
    Modarressi, M. H.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2021, 17 (01) : 1 - 27
  • [37] Fuzzy natural transform method for solving fuzzy differential equations
    Ahmad, Shabir
    Ullah, Aman
    Ullah, Abd
    Van Hoa, Ngo
    SOFT COMPUTING, 2023, 27 (13) : 8611 - 8625
  • [38] Solving fuzzy fractional differential equations by fuzzy Laplace transforms
    Salahshour, S.
    Allahviranloo, T.
    Abbasbandy, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) : 1372 - 1381
  • [39] Fuzzy natural transform method for solving fuzzy differential equations
    Shabir Ahmad
    Aman Ullah
    Abd Ullah
    Ngo Van Hoa
    Soft Computing, 2023, 27 : 8611 - 8625
  • [40] Numerical solution of differential equations using multiquadric radial basis function networks
    Mai-Duy, N
    Tran-Cong, T
    NEURAL NETWORKS, 2001, 14 (02) : 185 - 199